Pythagorean family: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>guest **Imported revision 304177420 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 304282212 - Original comment: Reverted to Dec 29, 2011 12:16 pm** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-22 23:41:44 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>304282212</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt>Reverted to Dec 29, 2011 12:16 pm</tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | ||
Line 14: | Line 15: | ||
EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396 | EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396 | ||
=Compton temperament= | =Compton temperament= | ||
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. | In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. | ||
In the either the 5 or 7-limit, [[240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune. | In the either the 5 or 7-limit, [[240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune. | ||
Line 28: | Line 29: | ||
EDOs: 12, [[60edo|60]], 72, 228, 300c, 372bc, 444bc | EDOs: 12, [[60edo|60]], 72, 228, 300c, 372bc, 444bc | ||
==11-limit== | ==11-limit== | ||
Commas: 225/224, 441/440, 4375/4356 | Commas: 225/224, 441/440, 4375/4356 | ||
Line 36: | Line 37: | ||
EDOs: 12, 60e, 72 | EDOs: 12, 60e, 72 | ||
==13-limit== | ==13-limit== | ||
Commas: 225/224, 441/440, 351/350, 364/363 | Commas: 225/224, 441/440, 351/350, 364/363 | ||
Line 45: | Line 46: | ||
Badness: 0.0219 | Badness: 0.0219 | ||
==Comptone== | ==Comptone== | ||
Commas: 225/224, 441/440, 325/324, 1001/1000 | Commas: 225/224, 441/440, 325/324, 1001/1000 | ||
Line 52: | Line 53: | ||
Map: [<12 19 0 -22 -42 100|, <0 0 1 2 3 -2|] | Map: [<12 19 0 -22 -42 100|, <0 0 1 2 3 -2|] | ||
EDOs: 12, 60e, 72, 204cdef, 276cdef | EDOs: 12, 60e, 72, 204cdef, 276cdef | ||
==11-limit== | Badness: 0.0251 | ||
=Catler temperament= | |||
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators. | |||
Commas: 81/80, 128/125 | |||
[[POTE tuning|POTE generator]]: 26.790 | |||
Map: [<12 19 28 0|, <0 0 0 1|] | |||
EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180 | |||
==11-limit== | |||
Commas: 81/80, 99/98, 128/125 | Commas: 81/80, 99/98, 128/125 | ||
Line 61: | Line 74: | ||
Badness: 0.0582 | Badness: 0.0582 | ||
==Catlat== | ==Catlat== | ||
Commas: 81/80, 128/125, 540/539 | Commas: 81/80, 128/125, 540/539 | ||
Line 70: | Line 83: | ||
Badness: 0.0819 | Badness: 0.0819 | ||
==Catcall== | ==Catcall== | ||
Commas: 56/55, 81/80, 128/125 | Commas: 56/55, 81/80, 128/125 | ||
Line 79: | Line 92: | ||
Badness: 0.0345 | Badness: 0.0345 | ||
=Omicronbeta temperament= | =Omicronbeta temperament= | ||
Commas: 225/224, 243/242, 441/440, 4375/4356 | Commas: 225/224, 243/242, 441/440, 4375/4356 | ||
Line 88: | Line 101: | ||
Badness: 0.0300 | Badness: 0.0300 | ||
=Hours= | =Hours= | ||
Commas: 19683/19600, 33075/32768 | Commas: 19683/19600, 33075/32768 | ||
Line 98: | Line 111: | ||
Badness: 0.1161 | Badness: 0.1161 | ||
==11-limit== | ==11-limit== | ||
Commas: 243/242, 385/384, 9801/9800 | Commas: 243/242, 385/384, 9801/9800 | ||
Line 107: | Line 120: | ||
Badness: 0.0362 | Badness: 0.0362 | ||
==13-limit== | ==13-limit== | ||
Commas: 243/242, 351/350, 364/363, 385/384 | Commas: 243/242, 351/350, 364/363, 385/384 | ||
Line 114: | Line 127: | ||
Map: [<24 38 0 123 83 33|, <0 0 1 -1 0 1|] | Map: [<24 38 0 123 83 33|, <0 0 1 -1 0 1|] | ||
EDOs: 24, 48f, 72, 168df, 240df | EDOs: 24, 48f, 72, 168df, 240df | ||
Badness: 0.0269</pre></div> | Badness: 0.0269 | ||
</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Pythagorean family</title></head><body><!-- ws:start:WikiTextTocRule: | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Pythagorean family</title></head><body><!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Compton temperament">Compton temperament</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --> | <a href="#Catler temperament">Catler temperament</a><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --> | <a href="#Omicronbeta temperament">Omicronbeta temperament</a><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --> | <a href="#Hours">Hours</a><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:37 --><br /> | ||
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12&gt;, and hence the fifths form a closed 12-note circle of fifths, identical to <a class="wiki_link" href="/12edo">12edo</a>. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.<br /> | |||
<br /> | <br /> | ||
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 15.116<br /> | <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 15.116<br /> | ||
Line 125: | Line 140: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Compton temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compton temperament</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Compton temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compton temperament</h1> | ||
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1&gt; to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&amp;72 temperament, and <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/84edo">84edo</a> or <a class="wiki_link" href="/240edo">240edo</a> make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. <br /> | |||
<br /> | <br /> | ||
In the either the 5 or 7-limit, <a class="wiki_link" href="/240edo">240edo</a> is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.<br /> | In the either the 5 or 7-limit, <a class="wiki_link" href="/240edo">240edo</a> is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.<br /> | ||
Line 139: | Line 154: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Compton temperament-11-limit"></a><!-- ws:end:WikiTextHeadingRule:2 -->11-limit</h2> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Compton temperament-11-limit"></a><!-- ws:end:WikiTextHeadingRule:2 -->11-limit</h2> | ||
Commas: 225/224, 441/440, 4375/4356<br /> | |||
<br /> | <br /> | ||
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 383.266 (16.734)<br /> | <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 383.266 (16.734)<br /> | ||
Line 147: | Line 162: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Compton temperament-13-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->13-limit</h2> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Compton temperament-13-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->13-limit</h2> | ||
Commas: 225/224, 441/440, 351/350, 364/363<br /> | |||
<br /> | <br /> | ||
POTE generator: ~5/4 = 383.963 (16.037)<br /> | POTE generator: ~5/4 = 383.963 (16.037)<br /> | ||
Line 156: | Line 171: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Compton temperament-Comptone"></a><!-- ws:end:WikiTextHeadingRule:6 -->Comptone</h2> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Compton temperament-Comptone"></a><!-- ws:end:WikiTextHeadingRule:6 -->Comptone</h2> | ||
Commas: 225/224, 441/440, 325/324, 1001/1000<br /> | |||
<br /> | <br /> | ||
POTE generator: ~5/4 = 382.612 (17.388)<br /> | POTE generator: ~5/4 = 382.612 (17.388)<br /> | ||
Line 162: | Line 177: | ||
Map: [&lt;12 19 0 -22 -42 100|, &lt;0 0 1 2 3 -2|]<br /> | Map: [&lt;12 19 0 -22 -42 100|, &lt;0 0 1 2 3 -2|]<br /> | ||
EDOs: 12, 60e, 72, 204cdef, 276cdef<br /> | EDOs: 12, 60e, 72, 204cdef, 276cdef<br /> | ||
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id=" | Badness: 0.0251<br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Catler temperament"></a><!-- ws:end:WikiTextHeadingRule:8 -->Catler temperament</h1> | |||
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of <a class="wiki_link" href="/12edo">12edo</a>. Catler can also be characterized as the 12&amp;24 temperament. <a class="wiki_link" href="/36edo">36edo</a> or <a class="wiki_link" href="/48edo">48edo</a> are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators. <br /> | |||
<br /> | |||
Commas: 81/80, 128/125<br /> | |||
<br /> | |||
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 26.790<br /> | |||
<br /> | |||
Map: [&lt;12 19 28 0|, &lt;0 0 0 1|]<br /> | |||
EDOs: 12, <a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48</a>, 132, 180<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Catler temperament-11-limit"></a><!-- ws:end:WikiTextHeadingRule:10 -->11-limit</h2> | |||
Commas: 81/80, 99/98, 128/125<br /> | |||
<br /> | <br /> | ||
POTE generator: ~36/35 = 22.723<br /> | POTE generator: ~36/35 = 22.723<br /> | ||
Line 171: | Line 198: | ||
Badness: 0.0582<br /> | Badness: 0.0582<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Catler temperament-Catlat"></a><!-- ws:end:WikiTextHeadingRule:12 -->Catlat</h2> | ||
Commas: 81/80, 128/125, 540/539<br /> | |||
<br /> | <br /> | ||
POTE generator: ~36/35 = 27.864<br /> | POTE generator: ~36/35 = 27.864<br /> | ||
Line 180: | Line 207: | ||
Badness: 0.0819<br /> | Badness: 0.0819<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Catler temperament-Catcall"></a><!-- ws:end:WikiTextHeadingRule:14 -->Catcall</h2> | ||
Commas: 56/55, 81/80, 128/125<br /> | |||
<br /> | <br /> | ||
POTE generator: ~36/35 = 32.776<br /> | POTE generator: ~36/35 = 32.776<br /> | ||
Line 189: | Line 216: | ||
Badness: 0.0345<br /> | Badness: 0.0345<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Omicronbeta temperament"></a><!-- ws:end:WikiTextHeadingRule:16 -->Omicronbeta temperament</h1> | ||
Commas: 225/224, 243/242, 441/440, 4375/4356<br /> | |||
<br /> | <br /> | ||
Generator: ~13/8 = 837.814<br /> | Generator: ~13/8 = 837.814<br /> | ||
Line 198: | Line 225: | ||
Badness: 0.0300<br /> | Badness: 0.0300<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Hours"></a><!-- ws:end:WikiTextHeadingRule:18 -->Hours</h1> | ||
Commas: 19683/19600, 33075/32768<br /> | |||
<br /> | <br /> | ||
POTE generator: ~225/224 = 2.100<br /> | POTE generator: ~225/224 = 2.100<br /> | ||
Line 208: | Line 235: | ||
Badness: 0.1161<br /> | Badness: 0.1161<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Hours-11-limit"></a><!-- ws:end:WikiTextHeadingRule:20 -->11-limit</h2> | ||
Commas: 243/242, 385/384, 9801/9800<br /> | |||
<br /> | <br /> | ||
POTE generator: ~225/224 = 2.161<br /> | POTE generator: ~225/224 = 2.161<br /> | ||
Line 217: | Line 244: | ||
Badness: 0.0362<br /> | Badness: 0.0362<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Hours-13-limit"></a><!-- ws:end:WikiTextHeadingRule:22 -->13-limit</h2> | ||
Commas: 243/242, 351/350, 364/363, 385/384<br /> | |||
<br /> | <br /> | ||
POTE generator: ~225/224 = 3.955<br /> | POTE generator: ~225/224 = 3.955<br /> |
Revision as of 23:41, 22 February 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-02-22 23:41:44 UTC.
- The original revision id was 304282212.
- The revision comment was: Reverted to Dec 29, 2011 12:16 pm
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. [[POTE tuning|POTE generator]]: 15.116 Map: [<12 19 0|, <0 0 1|] EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396 =Compton temperament= In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. In the either the 5 or 7-limit, [[240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune. In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this [[72edo]] can be recommended as a tuning. Commas: 225/224, 250047/250000 [[POTE tuning|POTE generator]]: ~5/4 = 383.775 (16.225) Map: [<12 19 0 -22|, <0 0 1 2|] EDOs: 12, [[60edo|60]], 72, 228, 300c, 372bc, 444bc ==11-limit== Commas: 225/224, 441/440, 4375/4356 [[POTE tuning|POTE generator]]: ~5/4 = 383.266 (16.734) Map: [<12 19 0 -22 -42|, <0 0 1 2 3|] EDOs: 12, 60e, 72 ==13-limit== Commas: 225/224, 441/440, 351/350, 364/363 POTE generator: ~5/4 = 383.963 (16.037) Map: [<12 19 0 -22 -42 -67|, <0 0 1 2 3 4|] EDOs: 72, 228f, 300cf Badness: 0.0219 ==Comptone== Commas: 225/224, 441/440, 325/324, 1001/1000 POTE generator: ~5/4 = 382.612 (17.388) Map: [<12 19 0 -22 -42 100|, <0 0 1 2 3 -2|] EDOs: 12, 60e, 72, 204cdef, 276cdef Badness: 0.0251 =Catler temperament= In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators. Commas: 81/80, 128/125 [[POTE tuning|POTE generator]]: 26.790 Map: [<12 19 28 0|, <0 0 0 1|] EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180 ==11-limit== Commas: 81/80, 99/98, 128/125 POTE generator: ~36/35 = 22.723 Map: [<12 19 28 0 -26|, <0 0 0 1 2|] EDOs: 12, 48c, 108cd Badness: 0.0582 ==Catlat== Commas: 81/80, 128/125, 540/539 POTE generator: ~36/35 = 27.864 Map: [<12 19 28 0 109|, <0 0 0 1 -2|] EDOs: 36, 48c, 84c Badness: 0.0819 ==Catcall== Commas: 56/55, 81/80, 128/125 POTE generator: ~36/35 = 32.776 Map: [<12 19 28 0 8|, <0 0 0 1 1|] EDOs: 12, 24, 36, 72ce Badness: 0.0345 =Omicronbeta temperament= Commas: 225/224, 243/242, 441/440, 4375/4356 Generator: ~13/8 = 837.814 Map: [<72 114 167 202 249 266|, <0 0 0 0 0 1|] EDOs: 72, 144, 216c, 288cdf, 504bcdef Badness: 0.0300 =Hours= Commas: 19683/19600, 33075/32768 POTE generator: ~225/224 = 2.100 Map: [<24 38 0 123 83|, <0 0 1 -1 0|] Wedgie: <0 24 -24 38 -38 -123| EDOs: 24, 48, 72, 312bd, 384bcd, 456bcd, 528bcd, 600bcd Badness: 0.1161 ==11-limit== Commas: 243/242, 385/384, 9801/9800 POTE generator: ~225/224 = 2.161 Map: [<24 38 0 123 83|, <0 0 1 -1 0|] EDOs: 24, 48, 72, 312bd, 384bcd, 456bcde, 528bcde Badness: 0.0362 ==13-limit== Commas: 243/242, 351/350, 364/363, 385/384 POTE generator: ~225/224 = 3.955 Map: [<24 38 0 123 83 33|, <0 0 1 -1 0 1|] EDOs: 24, 48f, 72, 168df, 240df Badness: 0.0269
Original HTML content:
<html><head><title>Pythagorean family</title></head><body><!-- ws:start:WikiTextTocRule:24:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Compton temperament">Compton temperament</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --> | <a href="#Catler temperament">Catler temperament</a><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --> | <a href="#Omicronbeta temperament">Omicronbeta temperament</a><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --> | <a href="#Hours">Hours</a><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> <!-- ws:end:WikiTextTocRule:37 --><br /> The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to <a class="wiki_link" href="/12edo">12edo</a>. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 15.116<br /> <br /> Map: [<12 19 0|, <0 0 1|]<br /> EDOs: <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/84edo">84</a>, 156, 240, 396<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Compton temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Compton temperament</h1> In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/84edo">84edo</a> or <a class="wiki_link" href="/240edo">240edo</a> make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80. <br /> <br /> In the either the 5 or 7-limit, <a class="wiki_link" href="/240edo">240edo</a> is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.<br /> <br /> In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this <a class="wiki_link" href="/72edo">72edo</a> can be recommended as a tuning.<br /> <br /> Commas: 225/224, 250047/250000<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 383.775 (16.225)<br /> <br /> Map: [<12 19 0 -22|, <0 0 1 2|]<br /> EDOs: 12, <a class="wiki_link" href="/60edo">60</a>, 72, 228, 300c, 372bc, 444bc<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="Compton temperament-11-limit"></a><!-- ws:end:WikiTextHeadingRule:2 -->11-limit</h2> Commas: 225/224, 441/440, 4375/4356<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 383.266 (16.734)<br /> <br /> Map: [<12 19 0 -22 -42|, <0 0 1 2 3|]<br /> EDOs: 12, 60e, 72<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Compton temperament-13-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->13-limit</h2> Commas: 225/224, 441/440, 351/350, 364/363<br /> <br /> POTE generator: ~5/4 = 383.963 (16.037)<br /> <br /> Map: [<12 19 0 -22 -42 -67|, <0 0 1 2 3 4|]<br /> EDOs: 72, 228f, 300cf<br /> Badness: 0.0219<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="Compton temperament-Comptone"></a><!-- ws:end:WikiTextHeadingRule:6 -->Comptone</h2> Commas: 225/224, 441/440, 325/324, 1001/1000<br /> <br /> POTE generator: ~5/4 = 382.612 (17.388)<br /> <br /> Map: [<12 19 0 -22 -42 100|, <0 0 1 2 3 -2|]<br /> EDOs: 12, 60e, 72, 204cdef, 276cdef<br /> Badness: 0.0251<br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc4"><a name="Catler temperament"></a><!-- ws:end:WikiTextHeadingRule:8 -->Catler temperament</h1> In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of <a class="wiki_link" href="/12edo">12edo</a>. Catler can also be characterized as the 12&24 temperament. <a class="wiki_link" href="/36edo">36edo</a> or <a class="wiki_link" href="/48edo">48edo</a> are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators. <br /> <br /> Commas: 81/80, 128/125<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 26.790<br /> <br /> Map: [<12 19 28 0|, <0 0 0 1|]<br /> EDOs: 12, <a class="wiki_link" href="/36edo">36</a>, <a class="wiki_link" href="/48edo">48</a>, 132, 180<br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h2> --><h2 id="toc5"><a name="Catler temperament-11-limit"></a><!-- ws:end:WikiTextHeadingRule:10 -->11-limit</h2> Commas: 81/80, 99/98, 128/125<br /> <br /> POTE generator: ~36/35 = 22.723<br /> <br /> Map: [<12 19 28 0 -26|, <0 0 0 1 2|]<br /> EDOs: 12, 48c, 108cd<br /> Badness: 0.0582<br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><a name="Catler temperament-Catlat"></a><!-- ws:end:WikiTextHeadingRule:12 -->Catlat</h2> Commas: 81/80, 128/125, 540/539<br /> <br /> POTE generator: ~36/35 = 27.864<br /> <br /> Map: [<12 19 28 0 109|, <0 0 0 1 -2|]<br /> EDOs: 36, 48c, 84c<br /> Badness: 0.0819<br /> <br /> <!-- ws:start:WikiTextHeadingRule:14:<h2> --><h2 id="toc7"><a name="Catler temperament-Catcall"></a><!-- ws:end:WikiTextHeadingRule:14 -->Catcall</h2> Commas: 56/55, 81/80, 128/125<br /> <br /> POTE generator: ~36/35 = 32.776<br /> <br /> Map: [<12 19 28 0 8|, <0 0 0 1 1|]<br /> EDOs: 12, 24, 36, 72ce<br /> Badness: 0.0345<br /> <br /> <!-- ws:start:WikiTextHeadingRule:16:<h1> --><h1 id="toc8"><a name="Omicronbeta temperament"></a><!-- ws:end:WikiTextHeadingRule:16 -->Omicronbeta temperament</h1> Commas: 225/224, 243/242, 441/440, 4375/4356<br /> <br /> Generator: ~13/8 = 837.814<br /> <br /> Map: [<72 114 167 202 249 266|, <0 0 0 0 0 1|]<br /> EDOs: 72, 144, 216c, 288cdf, 504bcdef<br /> Badness: 0.0300<br /> <br /> <!-- ws:start:WikiTextHeadingRule:18:<h1> --><h1 id="toc9"><a name="Hours"></a><!-- ws:end:WikiTextHeadingRule:18 -->Hours</h1> Commas: 19683/19600, 33075/32768<br /> <br /> POTE generator: ~225/224 = 2.100<br /> <br /> Map: [<24 38 0 123 83|, <0 0 1 -1 0|]<br /> Wedgie: <0 24 -24 38 -38 -123|<br /> EDOs: 24, 48, 72, 312bd, 384bcd, 456bcd, 528bcd, 600bcd<br /> Badness: 0.1161<br /> <br /> <!-- ws:start:WikiTextHeadingRule:20:<h2> --><h2 id="toc10"><a name="Hours-11-limit"></a><!-- ws:end:WikiTextHeadingRule:20 -->11-limit</h2> Commas: 243/242, 385/384, 9801/9800<br /> <br /> POTE generator: ~225/224 = 2.161<br /> <br /> Map: [<24 38 0 123 83|, <0 0 1 -1 0|]<br /> EDOs: 24, 48, 72, 312bd, 384bcd, 456bcde, 528bcde<br /> Badness: 0.0362<br /> <br /> <!-- ws:start:WikiTextHeadingRule:22:<h2> --><h2 id="toc11"><a name="Hours-13-limit"></a><!-- ws:end:WikiTextHeadingRule:22 -->13-limit</h2> Commas: 243/242, 351/350, 364/363, 385/384<br /> <br /> POTE generator: ~225/224 = 3.955<br /> <br /> Map: [<24 38 0 123 83 33|, <0 0 1 -1 0 1|]<br /> EDOs: 24, 48f, 72, 168df, 240df<br /> Badness: 0.0269</body></html>