Prime number: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Andrew_Heathwaite **Imported revision 288888001 - Original comment: ** |
Wikispaces>hstraub **Imported revision 295467048 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:hstraub|hstraub]] and made on <tt>2012-01-26 03:48:44 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>295467048</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 20: | Line 20: | ||
A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains [[2edo]], [[3edo]], [[4edo]] and [[6edo]]. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as [[35edo]], will work just as well for this purpose. | A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains [[2edo]], [[3edo]], [[4edo]] and [[6edo]]. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as [[35edo]], will work just as well for this purpose. | ||
If you like a certain EDO for its intervals or other reasons, but do not like its primality or non-primality, choosing another equivalence interval, such as the [[edt|tritave (3/1)]] instead of the octave, can be an option. For example, [[27edt]] is a non-prime system very similar to [[17edo]], while [[19edt|19edt (Stopper tuning)]] is a prime system very similar to the ubiquitous [[12edo]]. Anyway, for every prime EDO system there is a non-prime [[ED4]] system with identical step sizes. | |||
The larger //n// is, the less these points matter, since the difference between an //absolutely// uniform scale and an approximated, //nearly// uniform scale eventually become inaudible. | The larger //n// is, the less these points matter, since the difference between an //absolutely// uniform scale and an approximated, //nearly// uniform scale eventually become inaudible. | ||
Line 54: | Line 56: | ||
<br /> | <br /> | ||
A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains <a class="wiki_link" href="/2edo">2edo</a>, <a class="wiki_link" href="/3edo">3edo</a>, <a class="wiki_link" href="/4edo">4edo</a> and <a class="wiki_link" href="/6edo">6edo</a>. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as <a class="wiki_link" href="/35edo">35edo</a>, will work just as well for this purpose.<br /> | A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains <a class="wiki_link" href="/2edo">2edo</a>, <a class="wiki_link" href="/3edo">3edo</a>, <a class="wiki_link" href="/4edo">4edo</a> and <a class="wiki_link" href="/6edo">6edo</a>. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as <a class="wiki_link" href="/35edo">35edo</a>, will work just as well for this purpose.<br /> | ||
<br /> | |||
If you like a certain EDO for its intervals or other reasons, but do not like its primality or non-primality, choosing another equivalence interval, such as the <a class="wiki_link" href="/edt">tritave (3/1)</a> instead of the octave, can be an option. For example, <a class="wiki_link" href="/27edt">27edt</a> is a non-prime system very similar to <a class="wiki_link" href="/17edo">17edo</a>, while <a class="wiki_link" href="/19edt">19edt (Stopper tuning)</a> is a prime system very similar to the ubiquitous <a class="wiki_link" href="/12edo">12edo</a>. Anyway, for every prime EDO system there is a non-prime <a class="wiki_link" href="/ED4">ED4</a> system with identical step sizes.<br /> | |||
<br /> | <br /> | ||
The larger <em>n</em> is, the less these points matter, since the difference between an <em>absolutely</em> uniform scale and an approximated, <em>nearly</em> uniform scale eventually become inaudible.<br /> | The larger <em>n</em> is, the less these points matter, since the difference between an <em>absolutely</em> uniform scale and an approximated, <em>nearly</em> uniform scale eventually become inaudible.<br /> |
Revision as of 03:48, 26 January 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author hstraub and made on 2012-01-26 03:48:44 UTC.
- The original revision id was 295467048.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Prime numbers in [[EDO]]s= A //prime number// is an integer (whole number) greater than one which is divisible only by itself and one. There are an infinite number of prime numbers, the first few of which are 2, 3, 5, 7, 11, 13 ... . Whether or not a number //n// is prime has important consequences for the properties of the corresponding //n//-[[edo|EDO]], especially for lower values of //n//. * If the octave is divided into a prime number of equal parts, there is //no fully symmetric chord//, such as the diminished seventh chord in [[12edo]]. * There is also (besides the scale comprising all notes of the EDO) //no absolutely uniform, octave-repeating scale//, like the wholetone scale in 12edo. * Nor is there a thing like [[http://en.wikipedia.org/wiki/Modes_of_limited_transposition|modes of limited transpostion]], as used by the composer Olivier Messiaen. * //n//-EDO does not support any rank two temperament with period a fraction of an octave; all such temperaments are //linear// temperaments. * Making a chain of any interval of the //n//-EDO, one can reach every tone in //n// steps. (For composite EDOs, this will work with intervals that are co-prime to the EDO, for example 5 degrees of [[12EDO]].) For these or similar reasons, some musicians do not like the prime EDOs (e.g. the makers of [[http://www.armodue.com/risorse.htm|Armodue]]) and others love them. Primality may be desirable if you want, for example, a wholetone scale that is //not// absolutely uniform. In this case you might like [[19edo]] (with whole tone scale 3 3 3 3 3 4, MOS scale of type [[1L 5s|1L+5s]]) or [[17edo]] (with whole tone scale 3 3 3 3 3 2, MOS Scale of type [[5L 1s|5L+1s]]). In general, making a chain of any interval of a prime //n//-EDO, thus treating the interval as the generator of a [[MOSScales|Moment of Symmetry]] scale, one can reach every tone in //n// steps. For composite EDOs, this will only work with intervals that are co-prime to the EDO, for example 5 degrees of [[12EDO]] (which generates the diatonic scale and a cycle of fifths that closes at 12 tones) but not 4 out of 12 (which generates a much smaller cycle of [[3edo]]). A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains [[2edo]], [[3edo]], [[4edo]] and [[6edo]]. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as [[35edo]], will work just as well for this purpose. If you like a certain EDO for its intervals or other reasons, but do not like its primality or non-primality, choosing another equivalence interval, such as the [[edt|tritave (3/1)]] instead of the octave, can be an option. For example, [[27edt]] is a non-prime system very similar to [[17edo]], while [[19edt|19edt (Stopper tuning)]] is a prime system very similar to the ubiquitous [[12edo]]. Anyway, for every prime EDO system there is a non-prime [[ED4]] system with identical step sizes. The larger //n// is, the less these points matter, since the difference between an //absolutely// uniform scale and an approximated, //nearly// uniform scale eventually become inaudible. [TODO: add more useful things about prime numbers for musicians, composers, microtonalists, xenharmonicians, ekmelicians and theorists here.] ==The first 46 Prime EDOs== Multiples of an EDO, including multiples of a prime EDO, can inherit properties from that EDO, in particular a tuning for certain intervals. A multiple however is by definition more complex; a prime EDO is always the least complex EDO divisible by that prime, and these are listed below: [[2edo|2]], [[3edo|3]], [[5edo|5]], [[7edo|7]], [[11edo|11]], [[13edo|13]], [[17edo|17]], [[19edo|19]], [[23edo|23]], [[29edo|29]], [[31edo|31]], [[37edo|37]], [[41edo|41]], [[43edo|43]], [[47edo|47]], [[53edo|53]], [[59edo|59]], [[61edo|61]], [[67edo|67]], [[71edo|71]], [[73edo|73]], [[79edo|79]], [[83edo|83]], [[89edo|89]], [[97edo|97]], [[101edo|101]], [[103edo|103]], [[107edo|107]], [[109edo|109]], [[113edo|113]], [[127edo|127]], [[131edo|131]], [[137edo|137]], [[139edo|139]], [[149edo|149]], [[151edo|151]], [[157edo|157]], [[163edo|163]], [[167edo|167]], [[173edo|173]], [[179edo|179]], [[181edo|181]], [[191edo|191]], [[193edo|193]], [[197edo|197]], [[199edo|199]]. ==See also== * [[The Prime Harmonic Series]] * [[Monzo]] - an alternative notation for interval ratios * [[prime limit]] or [[Harmonic Limit]] ==Links== * [[http://www.arndt-bruenner.de/mathe/scripts/primzahlen.htm|Die Primzahlseite]] (German) by Arndt Brünner (helpful tools for prime factorization and ~test) * [[http://en.wikipedia.org/wiki/Prime_number|Prime number]] the Wikipedia article
Original HTML content:
<html><head><title>prime numbers</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Prime numbers in EDOs"></a><!-- ws:end:WikiTextHeadingRule:0 -->Prime numbers in <a class="wiki_link" href="/EDO">EDO</a>s</h1> <br /> A <em>prime number</em> is an integer (whole number) greater than one which is divisible only by itself and one. There are an infinite number of prime numbers, the first few of which are 2, 3, 5, 7, 11, 13 ... . Whether or not a number <em>n</em> is prime has important consequences for the properties of the corresponding <em>n</em>-<a class="wiki_link" href="/edo">EDO</a>, especially for lower values of <em>n</em>.<br /> <ul><li>If the octave is divided into a prime number of equal parts, there is <em>no fully symmetric chord</em>, such as the diminished seventh chord in <a class="wiki_link" href="/12edo">12edo</a>.</li><li>There is also (besides the scale comprising all notes of the EDO) <em>no absolutely uniform, octave-repeating scale</em>, like the wholetone scale in 12edo.</li><li>Nor is there a thing like <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Modes_of_limited_transposition" rel="nofollow">modes of limited transpostion</a>, as used by the composer Olivier Messiaen.</li><li><em>n</em>-EDO does not support any rank two temperament with period a fraction of an octave; all such temperaments are <em>linear</em> temperaments.</li><li>Making a chain of any interval of the <em>n</em>-EDO, one can reach every tone in <em>n</em> steps. (For composite EDOs, this will work with intervals that are co-prime to the EDO, for example 5 degrees of <a class="wiki_link" href="/12EDO">12EDO</a>.)</li></ul><br /> For these or similar reasons, some musicians do not like the prime EDOs (e.g. the makers of <a class="wiki_link_ext" href="http://www.armodue.com/risorse.htm" rel="nofollow">Armodue</a>) and others love them.<br /> <br /> Primality may be desirable if you want, for example, a wholetone scale that is <em>not</em> absolutely uniform. In this case you might like <a class="wiki_link" href="/19edo">19edo</a> (with whole tone scale 3 3 3 3 3 4, MOS scale of type <a class="wiki_link" href="/1L%205s">1L+5s</a>) or <a class="wiki_link" href="/17edo">17edo</a> (with whole tone scale 3 3 3 3 3 2, MOS Scale of type <a class="wiki_link" href="/5L%201s">5L+1s</a>). In general, making a chain of any interval of a prime <em>n</em>-EDO, thus treating the interval as the generator of a <a class="wiki_link" href="/MOSScales">Moment of Symmetry</a> scale, one can reach every tone in <em>n</em> steps. For composite EDOs, this will only work with intervals that are co-prime to the EDO, for example 5 degrees of <a class="wiki_link" href="/12EDO">12EDO</a> (which generates the diatonic scale and a cycle of fifths that closes at 12 tones) but not 4 out of 12 (which generates a much smaller cycle of <a class="wiki_link" href="/3edo">3edo</a>).<br /> <br /> A prime edo is useful for avoiding intervals and patterns that are familiar-sounding due to their occurrence in 12edo. Since 12 is 2*2*3, it contains <a class="wiki_link" href="/2edo">2edo</a>, <a class="wiki_link" href="/3edo">3edo</a>, <a class="wiki_link" href="/4edo">4edo</a> and <a class="wiki_link" href="/6edo">6edo</a>. All edos with a 2, 3, 4, or 6 in their factorization will share at least one interval with 12edo, if not a whole chord or subset scale. Of course, if the goal is simply to avoid intervals of 12, then non-prime edos which don't have a 2, 3, 4, or 6 in their factorization, such as <a class="wiki_link" href="/35edo">35edo</a>, will work just as well for this purpose.<br /> <br /> If you like a certain EDO for its intervals or other reasons, but do not like its primality or non-primality, choosing another equivalence interval, such as the <a class="wiki_link" href="/edt">tritave (3/1)</a> instead of the octave, can be an option. For example, <a class="wiki_link" href="/27edt">27edt</a> is a non-prime system very similar to <a class="wiki_link" href="/17edo">17edo</a>, while <a class="wiki_link" href="/19edt">19edt (Stopper tuning)</a> is a prime system very similar to the ubiquitous <a class="wiki_link" href="/12edo">12edo</a>. Anyway, for every prime EDO system there is a non-prime <a class="wiki_link" href="/ED4">ED4</a> system with identical step sizes.<br /> <br /> The larger <em>n</em> is, the less these points matter, since the difference between an <em>absolutely</em> uniform scale and an approximated, <em>nearly</em> uniform scale eventually become inaudible.<br /> <br /> [TODO: add more useful things about prime numbers for musicians, composers, microtonalists, xenharmonicians, ekmelicians and theorists here.]<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="Prime numbers in EDOs-The first 46 Prime EDOs"></a><!-- ws:end:WikiTextHeadingRule:2 -->The first 46 Prime EDOs</h2> Multiples of an EDO, including multiples of a prime EDO, can inherit properties from that EDO, in particular a tuning for certain intervals. A multiple however is by definition more complex; a prime EDO is always the least complex EDO divisible by that prime, and these are listed below:<br /> <br /> <a class="wiki_link" href="/2edo">2</a>, <a class="wiki_link" href="/3edo">3</a>, <a class="wiki_link" href="/5edo">5</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/11edo">11</a>, <a class="wiki_link" href="/13edo">13</a>, <a class="wiki_link" href="/17edo">17</a>,<br /> <a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/23edo">23</a>, <a class="wiki_link" href="/29edo">29</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/37edo">37</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/43edo">43</a>,<br /> <a class="wiki_link" href="/47edo">47</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/59edo">59</a>, <a class="wiki_link" href="/61edo">61</a>, <a class="wiki_link" href="/67edo">67</a>, <a class="wiki_link" href="/71edo">71</a>, <a class="wiki_link" href="/73edo">73</a>,<br /> <a class="wiki_link" href="/79edo">79</a>, <a class="wiki_link" href="/83edo">83</a>, <a class="wiki_link" href="/89edo">89</a>, <a class="wiki_link" href="/97edo">97</a>, <a class="wiki_link" href="/101edo">101</a>, <a class="wiki_link" href="/103edo">103</a>, <a class="wiki_link" href="/107edo">107</a>,<br /> <a class="wiki_link" href="/109edo">109</a>, <a class="wiki_link" href="/113edo">113</a>, <a class="wiki_link" href="/127edo">127</a>, <a class="wiki_link" href="/131edo">131</a>, <a class="wiki_link" href="/137edo">137</a>, <a class="wiki_link" href="/139edo">139</a>, <a class="wiki_link" href="/149edo">149</a>,<br /> <a class="wiki_link" href="/151edo">151</a>, <a class="wiki_link" href="/157edo">157</a>, <a class="wiki_link" href="/163edo">163</a>, <a class="wiki_link" href="/167edo">167</a>, <a class="wiki_link" href="/173edo">173</a>, <a class="wiki_link" href="/179edo">179</a>, <a class="wiki_link" href="/181edo">181</a>,<br /> <a class="wiki_link" href="/191edo">191</a>, <a class="wiki_link" href="/193edo">193</a>, <a class="wiki_link" href="/197edo">197</a>, <a class="wiki_link" href="/199edo">199</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Prime numbers in EDOs-See also"></a><!-- ws:end:WikiTextHeadingRule:4 -->See also</h2> <ul><li><a class="wiki_link" href="/The%20Prime%20Harmonic%20Series">The Prime Harmonic Series</a></li><li><a class="wiki_link" href="/Monzo">Monzo</a> - an alternative notation for interval ratios</li><li><a class="wiki_link" href="/prime%20limit">prime limit</a> or <a class="wiki_link" href="/Harmonic%20Limit">Harmonic Limit</a></li></ul><br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="Prime numbers in EDOs-Links"></a><!-- ws:end:WikiTextHeadingRule:6 -->Links</h2> <ul><li><a class="wiki_link_ext" href="http://www.arndt-bruenner.de/mathe/scripts/primzahlen.htm" rel="nofollow">Die Primzahlseite</a> (German) by Arndt Brünner (helpful tools for prime factorization and ~test)</li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Prime_number" rel="nofollow">Prime number</a> the Wikipedia article</li></ul></body></html>