Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 146418717 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 146423317 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-02 03:04:05 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-02 03:50:58 UTC</tt>.<br>
: The original revision id was <tt>146418717</tt>.<br>
: The original revision id was <tt>146423317</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:


==Seven limit children==
==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal diesis, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48 for nautilus.</pre></div>
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal quarter tone, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48, the slendro diesis for nautilus.
 
===Porcupine===
Porcupine, with wedgie &lt;&lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3/22 is a good tuning choice, though we might pick in preference 8/59, 11/81, or 19/140 for our generator.
 
===Hystrix===
Hystrix, with wedgie &lt;&lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2/15 or 9/68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Porcupine family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is |1 -5 3&amp;gt;, and flipping that yields &amp;lt;&amp;lt;3 5 1|| for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Porcupine family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is |1 -5 3&amp;gt;, and flipping that yields &amp;lt;&amp;lt;3 5 1|| for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal diesis, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48 for nautilus.&lt;/body&gt;&lt;/html&gt;</pre></div>
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal quarter tone, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48, the slendro diesis for nautilus.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Seven limit children-Porcupine"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Porcupine&lt;/h3&gt;
Porcupine, with wedgie &amp;lt;&amp;lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; provides, and once again 3/22 is a good tuning choice, though we might pick in preference 8/59, 11/81, or 19/140 for our generator.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x-Seven limit children-Hystrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Hystrix&lt;/h3&gt;
Hystrix, with wedgie &amp;lt;&amp;lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2/15 or 9/68 can be used, is a temperament for the adventurous souls who have probably already tried &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;. They can try the even sharper fifth of hystrix in &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt; and see how that suits.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 03:50, 2 June 2010

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2010-06-02 03:50:58 UTC.
The original revision id was 146423317.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is |1 -5 3>, and flipping that yields <<3 5 1|| for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.

==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal quarter tone, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48, the slendro diesis for nautilus.

===Porcupine===
Porcupine, with wedgie <<3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3/22 is a good tuning choice, though we might pick in preference 8/59, 11/81, or 19/140 for our generator.

===Hystrix===
Hystrix, with wedgie <<3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2/15 or 9/68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.

Original HTML content:

<html><head><title>Porcupine family</title></head><body>The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is |1 -5 3&gt;, and flipping that yields &lt;&lt;3 5 1|| for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. That means 64/63, the Archytas comma, for porcupine, 36/35, the septimal quarter tone, for hystrix, 245/243, the sensamagic comma, for hedgehog, and 49/48, the slendro diesis for nautilus.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Seven limit children-Porcupine"></a><!-- ws:end:WikiTextHeadingRule:2 -->Porcupine</h3>
Porcupine, with wedgie &lt;&lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as <a class="wiki_link" href="/22edo">22edo</a> provides, and once again 3/22 is a good tuning choice, though we might pick in preference 8/59, 11/81, or 19/140 for our generator.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x-Seven limit children-Hystrix"></a><!-- ws:end:WikiTextHeadingRule:4 -->Hystrix</h3>
Hystrix, with wedgie &lt;&lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2/15 or 9/68 can be used, is a temperament for the adventurous souls who have probably already tried <a class="wiki_link" href="/15edo">15edo</a>. They can try the even sharper fifth of hystrix in <a class="wiki_link" href="/68edo">68edo</a> and see how that suits.</body></html>