Pentacircle chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 285352166 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 285563084 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-13 02:15:38 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-13 13:26:50 UTC</tt>.<br>
: The original revision id was <tt>285352166</tt>.<br>
: The original revision id was <tt>285563084</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //pentacircle chord// is an 11-limit [[Dyadic chord#Essentially tempered dyadic chords|essentially tempered dyadic chord]] tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //pentacircle chord// is an [[Dyadic chord#Essentially tempered dyadic chords|essentially tempered dyadic chord]] in the 2.9.7.11 subgroup of the 11-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.


Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.
Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.
Line 15: Line 15:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pentacircle chords&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;em&gt;pentacircle chord&lt;/em&gt; is an 11-limit &lt;a class="wiki_link" href="/Dyadic%20chord#Essentially tempered dyadic chords"&gt;essentially tempered dyadic chord&lt;/a&gt; tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pentacircle chords&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;em&gt;pentacircle chord&lt;/em&gt; is an &lt;a class="wiki_link" href="/Dyadic%20chord#Essentially tempered dyadic chords"&gt;essentially tempered dyadic chord&lt;/a&gt; in the 2.9.7.11 subgroup of the 11-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.&lt;/body&gt;&lt;/html&gt;</pre></div>
Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 13:26, 13 December 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-13 13:26:50 UTC.
The original revision id was 285563084.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

A //pentacircle chord// is an [[Dyadic chord#Essentially tempered dyadic chords|essentially tempered dyadic chord]] in the 2.9.7.11 subgroup of the 11-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.

Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.




Original HTML content:

<html><head><title>pentacircle chords</title></head><body>A <em>pentacircle chord</em> is an <a class="wiki_link" href="/Dyadic%20chord#Essentially tempered dyadic chords">essentially tempered dyadic chord</a> in the 2.9.7.11 subgroup of the 11-limit, tempering out the pentacircle comma, 896/891. The pentacircle triads are three in number, 1-9/7-16/9 with steps 9/7-11/8-9/8; 1-9/7-16/11 with steps 9/7-9/8-11/8; and 1-11/7-16/9 with steps 11/7-9/8-9/8. There are six pentacircle tetrads: the palindromic 1-9/8-14/9-7/4 with steps 9/8-11/8-9/8-8/7; the palindromic 1-9/8-11/8-14/9 with steps 9/8-11/9-9/8-9/7; the inverse pair 1-11/8-11/7-16/9 with steps 11/8-8/7-9/8-9/8 and 1-11/8-14/9-7/4 with steps 11/8-9/8-9/8-8/7; and the inverse pair 1-11/9-11/7-16/9 with steps 11/9-9/7-9/8-9/8 and 1-11/9-11/8-14/9 with steps 11/9-9/8-9/8-9/7. Finally, there are two pentacircle pentads, inversely related: 1-11/9-11/8-11/7-16/9 with steps 11/9-9/8-8/7-9/8-9/8 and 1-11/9-11/8-14/9-16/9 with steps 11/9-9/8-9/8-8/7-9/8.<br />
<br />
Equal divisions with pentacircle chords include 22, 27, 41, 46, 58, 68, 80, 87, 121, 145, 167, 208, 266e and 433bce.</body></html>