User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
54edo’s approximations of 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1 and 23/1 are all improved by [[139ed6]], a [[Octave stretch|stretched-octave]] version of 54edo. The trade-off is a slightly worse 2/1 and 19/1.
What follows is a comparison of stretched- and compressed-octave EDONAME tunings.


If one prefers a ''[[Octave shrinking|compressed-octave]]'' tuning instead, [[86edt]], [[126ed5]] and [[152ed7]] are possible choices. They improve upon 54edo’s  3/1, 5/1, 7/1 and 17/1, at the cost of its 2/1, 11/1 and 13/1.
; [[zpi|ZPINAME]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


[[40ed5/3]] is another compressed octave option. It improves upon 54edo’s 3/1, 5/1, 11/1, 13/1, 17/1 and 19/1, at slight cost to the 2/1 and 7/1. Its 2/1 is the least accurate of all the tunings mentioned in this section, though still accurate enough that it has low [[harmonic entropy]].
; [[EDONOI]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


What follows is a comparison of stretched- and compressed-octave 54edo tunings.
; [[WE|ETNAME, SUBGROUP WE tuning]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[ed6|139ed6]]
; EDONAME
* Octave size: 1205.08{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}  
Stretching the octave of 54edo by around 5{{c}} results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 10.15{{c}}. The tuning 139ed6 does this. So does the tuning 262zpi whose octave is identical to 139ed6 within 0.2{{c}}.
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|139|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed6}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|139|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed6 (continued)}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}


; [[ed7|151ed7]]
; [[WE|ETNAME, SUBGROUP WE tuning]]  
* Octave size: 1204.75{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 54edo by around 4.5{{c}} results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 11.12{{c}}. The tuning 151ed7 does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in equal|151|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed7}}
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in equal|151|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed7 (continued)}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[ed12|193ed12]]
; [[EDONOI]]  
* Octave size: 1203.66{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 54edo by around 3.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 10.97{{c}}. The tuning 193ed12 does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|193|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 193ed12}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|193|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 193ed12 (continued)}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[zpi|263zpi]]  
; [[zpi|ZPINAME]]  
* Step size: 22.243{{c}}, octave size: 1201.12{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 54edo by around 1{{c}} results in an improved prime 5, but worse primes 2, 3, 7, 11 and 13. This approximates all harmonics up to 16 within 10.94{{c}}. The tuning 263zpi does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|22.243|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 263zpi}}
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|22.243|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 263zpi (continued)}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
 
; 54edo
* Step size: 22.222{{c}}, octave size: 1200.00{{c}}
Pure-octaves 54edo approximates all harmonics up to 16 within 9.16{{c}}.
{{Harmonics in equal|54|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54edo}}
{{Harmonics in equal|54|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54edo (continued)}}
 
; [[WE|54et, 13-limit WE tuning]]
* Step size: 22.198{{c}}, octave size: 1198.69{{c}}
Compressing the octave of 54edo by around 1.5{{c}} results in improved primes 3, 7, 11, 13, 17 and 19, but worse primes 2 and 5. This approximates all harmonics up to 16 within 10.63{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. So does the tuning [[equal tuning|187ed11]] whose octave is identical to 13lim WE within 0.1{{c}}.
{{Harmonics in cet|22.198|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning}}
{{Harmonics in cet|22.198|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning (continued)}}
 
; [[zpi|264zpi]]
* Step size: 22.175{{c}}, octave size: 1197.45{{c}}
Compressing the octave of 54edo by around 2.5{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.19{{c}}. The tuning 264zpi does this. So does the tuning 194ed12 whose octave is identical to 264zpi within 0.01{{c}}.
{{Harmonics in cet|22.175|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 264zpi}}
{{Harmonics in cet|22.175|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 264zpi (continued)}}
 
; [[ed7|152ed7]]
* Octave size: 1196.82{{c}}
Compressing the octave of 54edo by around 3{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.36{{c}}. The tuning 152ed7 does this.
{{Harmonics in equal|152|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 152ed7}}
{{Harmonics in equal|152|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 152ed7 (continued)}}
 
; [[ed6|140ed6]]
* Octave size: 1196.47{{c}}
Compressing the octave of 54edo by around 3.5{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.59{{c}}. The tuning 140ed6 does this.
{{Harmonics in equal|140|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 140ed6}}
{{Harmonics in equal|140|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 140ed6 (continued)}}
 
; [[ed5|126ed5]]
* Octave size: 1194.13{{c}}
Compressing the octave of 54edo by around 6{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.20{{c}}. The tuning 126ed5 does this. So does the tuning [[86edt]] whose octave is identical to 126ed5 within 0.1{{c}}.
{{Harmonics in equal|126|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}}
{{Harmonics in equal|126|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}}
 
; [[ed5/3|40ed5/3]]
* Octave size: 1194.13{{c}}
Compressing the octave of 54edo by around 6{{c}} results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.20{{c}}. The tuning 126ed5 does this. So does the tuning [[86edt]] whose octave is identical to 126ed5 within 0.1{{c}}.
{{Harmonics in equal|40|5|3|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}}
{{Harmonics in equal|40|5|3|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}}


= Title2 =
= Title2 =

Revision as of 06:08, 2 September 2025

Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

What follows is a comparison of stretched- and compressed-octave EDONAME tunings.

ZPINAME
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Step 12 19 24 28 31 34 36 38 40 42 43
Approximation of harmonics in ZPINAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Step 44 46 47 48 49 50 51 52 53 54 54 55
EDONOI
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Steps
(reduced)
12
(0)
19
(7)
24
(0)
28
(4)
31
(7)
34
(10)
36
(0)
38
(2)
40
(4)
42
(6)
43
(7)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Steps
(reduced)
44
(8)
46
(10)
47
(11)
48
(0)
49
(1)
50
(2)
51
(3)
52
(4)
53
(5)
54
(6)
54
(6)
55
(7)
ETNAME, SUBGROUP WE tuning
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.

Approximation of harmonics in ETNAME, SUBGROUP WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Step 12 19 24 28 31 34 36 38 40 42 43
Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Step 44 46 47 48 49 50 51 52 53 54 54 55
EDONAME
  • Step size: NNN ¢, octave size: NNN ¢

Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in EDONAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Steps
(reduced)
12
(0)
19
(7)
24
(0)
28
(4)
31
(7)
34
(10)
36
(0)
38
(2)
40
(4)
42
(6)
43
(7)
Approximation of harmonics in EDONAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Steps
(reduced)
44
(8)
46
(10)
47
(11)
48
(0)
49
(1)
50
(2)
51
(3)
52
(4)
53
(5)
54
(6)
54
(6)
55
(7)
ETNAME, SUBGROUP WE tuning
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.

Approximation of harmonics in ETNAME, SUBGROUP WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Step 12 19 24 28 31 34 36 38 40 42 43
Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Step 44 46 47 48 49 50 51 52 53 54 54 55
EDONOI
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Steps
(reduced)
12
(0)
19
(7)
24
(0)
28
(4)
31
(7)
34
(10)
36
(0)
38
(2)
40
(4)
42
(6)
43
(7)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Steps
(reduced)
44
(8)
46
(10)
47
(11)
48
(0)
49
(1)
50
(2)
51
(3)
52
(4)
53
(5)
54
(6)
54
(6)
55
(7)
ZPINAME
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Relative (%) +0.0 -2.0 +0.0 +13.7 -2.0 +31.2 +0.0 -3.9 +13.7 +48.7 -2.0
Step 12 19 24 28 31 34 36 38 40 42 43
Approximation of harmonics in ZPINAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Relative (%) -40.5 +31.2 +11.7 +0.0 -5.0 -3.9 +2.5 +13.7 +29.2 +48.7 -28.3 -2.0
Step 44 46 47 48 49 50 51 52 53 54 54 55

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

64edo

  • 179ed7 (octave is identical to 326zpi within 0.3 ¢)
  • 165ed6
  • 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
  • 327zpi (18.767c)
  • 11-limit WE (18.755c)

pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢

  • 328zpi (18.721c)
  • 180ed7
  • 230ed12
  • 149ed5

59edo (reduce # of edonoi or zpi)

  • 152ed6
  • 294zpi (20.399c)
  • 211ed12
  • 295zpi (20.342c)

pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢

  • 13-limit WE (20.320c)
  • 7-limit WE (20.301c)
  • 166ed7
  • 212ed12
  • 296zpi (20.282c)
  • 153ed6
Medium priority

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

38edo

Approximation of harmonics in 38edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -7.2 +0.0 -7.4 -7.2 +10.1 +0.0 -14.4 -7.4 -14.5 -7.2 +12.1
Relative (%) +0.0 -22.9 +0.0 -23.3 -22.9 +32.1 +0.0 -45.7 -23.3 -45.8 -22.9 +38.3
Steps
(reduced)
38
(0)
60
(22)
76
(0)
88
(12)
98
(22)
107
(31)
114
(0)
120
(6)
126
(12)
131
(17)
136
(22)
141
(27)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)