Tour of regular temperaments: Difference between revisions
m →Rank-3 temperaments: fix linking |
Changed all the 2.3 pergens for rank-2 temps to ploidacots Tags: Reverted Visual edit |
||
Line 11: | Line 11: | ||
These are families defined by a 3-limit (color name: wa) comma. If only primes 2 and 3 are part of the [[subgroup]], the comma creates a rank-1 temperament, an [[edo]]. But if another prime such as 5 is present, the comma creates a rank-2 temperament. Since edos are discussed elsewhere, this section assumes the presence of at least one additional prime. The rank-2 temperament created consists of multiple "copies" of an edo. The edo copies can be thought of as being offset from one another by a small comma. This small comma is represented in the [[pergen]] by ^1. | These are families defined by a 3-limit (color name: wa) comma. If only primes 2 and 3 are part of the [[subgroup]], the comma creates a rank-1 temperament, an [[edo]]. But if another prime such as 5 is present, the comma creates a rank-2 temperament. Since edos are discussed elsewhere, this section assumes the presence of at least one additional prime. The rank-2 temperament created consists of multiple "copies" of an edo. The edo copies can be thought of as being offset from one another by a small comma. This small comma is represented in the [[pergen]] by ^1. | ||
; Blackwood family ( | ; Blackwood family (pentaploid acot) | ||
: This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp fifth. Its color name is Sawati. | : This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp fifth. Its color name is Sawati. | ||
; [[Whitewood family]] ( | ; [[Whitewood family]] (heptaploid acot) | ||
: This family tempers out the apotome, {{monzo| -11 7 }} (2187/2048). It equates 7 fifths with 4 octaves, which creates multiple copies of [[7edo]]. The fifth is ~685¢, which is very flat. This family includes the [[whitewood]] temperament. Its color name is Lawati. | : This family tempers out the apotome, {{monzo| -11 7 }} (2187/2048). It equates 7 fifths with 4 octaves, which creates multiple copies of [[7edo]]. The fifth is ~685¢, which is very flat. This family includes the [[whitewood]] temperament. Its color name is Lawati. | ||
; [[Compton family]] ( | ; [[Compton family]] (dodecaploid acot) | ||
: This tempers out the [[Pythagorean comma]], {{monzo| -19 12 }} (531441/524288). It equates 12 fifths with 7 octaves, which creates multiple copies of [[12edo]]. Temperaments in this family include [[compton]] and [[catler]]. In the 5-limit compton temperament, the edo copies are offset from one another by a justly tuned 5/4, or alternatively by a tempered 81/80. Several 12edo instruments slightly detuned from each other provide an easy way to make music with these temperaments. Its color name is Lalawati. | : This tempers out the [[Pythagorean comma]], {{monzo| -19 12 }} (531441/524288). It equates 12 fifths with 7 octaves, which creates multiple copies of [[12edo]]. Temperaments in this family include [[compton]] and [[catler]]. In the 5-limit compton temperament, the edo copies are offset from one another by a justly tuned 5/4, or alternatively by a tempered 81/80. Several 12edo instruments slightly detuned from each other provide an easy way to make music with these temperaments. Its color name is Lalawati. | ||
; [[Countercomp family]] ( | ; [[Countercomp family]] (41-ploid acot) | ||
: This family tempers out the [[41-comma|Pythagorean countercomma]], {{monzo| 65 -41 }}, which creates multiple copies of [[41edo]]. Its color name is Wa-41. | : This family tempers out the [[41-comma|Pythagorean countercomma]], {{monzo| 65 -41 }}, which creates multiple copies of [[41edo]]. Its color name is Wa-41. | ||
; [[Mercator family]] ( | ; [[Mercator family]] (53-ploid acot) | ||
: This family tempers out the [[Mercator's comma]], {{monzo| -84 53 }}, which creates multiple copies of [[53edo]]. Its color name is Wa-53. | : This family tempers out the [[Mercator's comma]], {{monzo| -84 53 }}, which creates multiple copies of [[53edo]]. Its color name is Wa-53. | ||
Line 29: | Line 29: | ||
These are families defined by a 5-limit (color name: ya) comma. As we go up in rank 2, the various 5-limit temperaments often break up as families of related temperaments, depending on how higher primes are mapped (or equivalently, on which higher limit commas are introduced.) The same comment applies to 7-limit temperaments and rank 3, etc. Members of families and their relationships can be classified by the [[normal lists|normal comma list]] of the various temperaments. Families include weak extensions as well as strong, in other words, the [[pergen]] shown here may change. | These are families defined by a 5-limit (color name: ya) comma. As we go up in rank 2, the various 5-limit temperaments often break up as families of related temperaments, depending on how higher primes are mapped (or equivalently, on which higher limit commas are introduced.) The same comment applies to 7-limit temperaments and rank 3, etc. Members of families and their relationships can be classified by the [[normal lists|normal comma list]] of the various temperaments. Families include weak extensions as well as strong, in other words, the [[pergen]] shown here may change. | ||
; [[Meantone family]] ( | ; [[Meantone family]] (monocot) | ||
: The meantone family tempers out [[81/80]], also called the syntonic comma. This comma manifests as the difference between a stack of four 3/2's (81/16, or (3/2)<sup>4</sup>) and 5/1 harmonic (5/1, or 80/16). It is so named because it splits the major third into two equal sized tones, signifying that 9/8 and 10/9 are equated, with each tone being sized as a mean of the two tones. It has a flattened fifth or sharpened fourth as generator. Some meantone tunings are [[12edo|12-]], [[19edo|19-]], [[31edo|31-]], [[43edo|43-]], [[50edo|50-]], [[55edo|55-]] and [[81edo]]. Aside from tuning meantone as a subset of some equal division of the octave, some common rank-2 tunings include having a generator of 3/2 flattened by 1/3, 2/7, 1/4, 1/5 or 1/6 of the syntonic comma. Its color name is Guti. | : The meantone family tempers out [[81/80]], also called the syntonic comma. This comma manifests as the difference between a stack of four 3/2's (81/16, or (3/2)<sup>4</sup>) and 5/1 harmonic (5/1, or 80/16). It is so named because it splits the major third into two equal sized tones, signifying that 9/8 and 10/9 are equated, with each tone being sized as a mean of the two tones. It has a flattened fifth or sharpened fourth as generator. Some meantone tunings are [[12edo|12-]], [[19edo|19-]], [[31edo|31-]], [[43edo|43-]], [[50edo|50-]], [[55edo|55-]] and [[81edo]]. Aside from tuning meantone as a subset of some equal division of the octave, some common rank-2 tunings include having a generator of 3/2 flattened by 1/3, 2/7, 1/4, 1/5 or 1/6 of the syntonic comma. Its color name is Guti. | ||
; [[Schismatic family]] ( | ; [[Schismatic family]] (monocot) | ||
: The schismatic family tempers out the schisma of {{monzo| -15 8 1 }} ([[32805/32768]]), which is the amount by which the Pythagorean comma exceeds the syntonic comma. The 5-limit version of the temperament is a [[microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity; whereas meantone equates four 3/2's with 5/1, schismatic equates eight 4/3's with 10/1, so that the Pythagorean diminished fourth of 8192/6561 is equated with 5/4. Tunings include [[12edo|12-]], [[29edo|29-]], [[41edo|41-]], [[53edo|53-]], and [[118edo]]. Its color name is Layoti. | : The schismatic family tempers out the schisma of {{monzo| -15 8 1 }} ([[32805/32768]]), which is the amount by which the Pythagorean comma exceeds the syntonic comma. The 5-limit version of the temperament is a [[microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity; whereas meantone equates four 3/2's with 5/1, schismatic equates eight 4/3's with 10/1, so that the Pythagorean diminished fourth of 8192/6561 is equated with 5/4. Tunings include [[12edo|12-]], [[29edo|29-]], [[41edo|41-]], [[53edo|53-]], and [[118edo]]. Its color name is Layoti. | ||
; [[Mavila family]] ( | ; [[Mavila family]] (monocot) | ||
: This tempers out the mavila comma, {{monzo| -7 3 1 }} ([[135/128]]), also known as the major chroma or major limma. These temperaments are notable for having 3/2's tuned so flat that four of them stacked together and octave reduced leads you to 6/5 instead of 5/4, and one consequence of this is that it generates [[2L 5s]] (antidiatonic) scales. 5/4 is equated to 3 fourths minus 1 octave. Septimal mavila and armodue are some of the most notable temperaments associated with the mavila comma. Tunings include [[9edo|9-]], [[16edo|16-]], [[23edo|23-]], and [[25edo]]. Its color name is Layobiti. | : This tempers out the mavila comma, {{monzo| -7 3 1 }} ([[135/128]]), also known as the major chroma or major limma. These temperaments are notable for having 3/2's tuned so flat that four of them stacked together and octave reduced leads you to 6/5 instead of 5/4, and one consequence of this is that it generates [[2L 5s]] (antidiatonic) scales. 5/4 is equated to 3 fourths minus 1 octave. Septimal mavila and armodue are some of the most notable temperaments associated with the mavila comma. Tunings include [[9edo|9-]], [[16edo|16-]], [[23edo|23-]], and [[25edo]]. Its color name is Layobiti. | ||
; [[Father family]] ( | ; [[Father family]] (monocot) | ||
: This tempers out [[16/15]], the just diatonic semitone, and equates 5/4 with 4/3. Its color name is Gubiti. | : This tempers out [[16/15]], the just diatonic semitone, and equates 5/4 with 4/3. Its color name is Gubiti. | ||
; [[Diaschismic family]] ( | ; [[Diaschismic family]] (diploid monocot) | ||
: The diaschismic family tempers out the [[diaschisma]], {{monzo| 11 -4 -2 }} (2048/2025), such that two classic major thirds and a [[81/64|Pythagorean major third]] stack to an octave (i.e. {{nowrap| (5/4)⋅(5/4)⋅(81/64) → 2/1 }}). It has a half-octave period of an approximate 45/32 or 64/45, and its generator is an approximate 3/2. 5/4 is equated to 3 periods minus 2 fifths. The major second ~9/8 is divided in half, with each half equated to ~16/15. Diaschismic tunings include [[12edo|12-]], [[22edo|22-]], [[34edo|34-]], [[46edo|46-]], [[56edo|56-]], [[58edo|58-]] and [[80edo]]. Its color name is Saguguti. An obvious 7-limit interpretation of the period is 7/5, which makes [[pajara]] temperament, where the intervals 50/49 and 64/63 are tempered out. [[22edo]] is an excellent pajara tuning. | : The diaschismic family tempers out the [[diaschisma]], {{monzo| 11 -4 -2 }} (2048/2025), such that two classic major thirds and a [[81/64|Pythagorean major third]] stack to an octave (i.e. {{nowrap| (5/4)⋅(5/4)⋅(81/64) → 2/1 }}). It has a half-octave period of an approximate 45/32 or 64/45, and its generator is an approximate 3/2. 5/4 is equated to 3 periods minus 2 fifths. The major second ~9/8 is divided in half, with each half equated to ~16/15. Diaschismic tunings include [[12edo|12-]], [[22edo|22-]], [[34edo|34-]], [[46edo|46-]], [[56edo|56-]], [[58edo|58-]] and [[80edo]]. Its color name is Saguguti. An obvious 7-limit interpretation of the period is 7/5, which makes [[pajara]] temperament, where the intervals 50/49 and 64/63 are tempered out. [[22edo]] is an excellent pajara tuning. | ||
; [[Bug family]] ( | ; [[Bug family]] (alpha-dicot) | ||
: This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or {{nowrap| 10/9 {{=}} ~250{{c}} }}, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. Its color name is Guguti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | : This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or {{nowrap| 10/9 {{=}} ~250{{c}} }}, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. Its color name is Guguti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | ||
; [[Immunity family]] ( | ; [[Immunity family]] (alpha-dicot) | ||
: This tempers out the immunity comma, {{monzo| 16 -13 2 }} (1638400/1594323). Its generator is {{nowrap| ~729/640 {{=}} ~247{{c}} }}, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. Its color name is Sasa-yoyoti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | : This tempers out the immunity comma, {{monzo| 16 -13 2 }} (1638400/1594323). Its generator is {{nowrap| ~729/640 {{=}} ~247{{c}} }}, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. Its color name is Sasa-yoyoti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | ||
; [[Dicot family]] ( | ; [[Dicot family]] (dicot) | ||
: The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, [[25/24]] (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 or between two 6/5's and 3/2). This temperament hence equates major and minor thirds, evening them out into a neutral-sized third of ~350¢ that is taken to approximate both. [[7edo]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the neutral dicot thirds span a 3/2. Tunings include 7edo, [[10edo]], and [[17edo]]. Its color name is Yoyoti. An obvious 2.3.11 interpretation of the generator is ~11/9, which leads to neutral or Luluti. | : The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, [[25/24]] (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 or between two 6/5's and 3/2). This temperament hence equates major and minor thirds, evening them out into a neutral-sized third of ~350¢ that is taken to approximate both. [[7edo]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the neutral dicot thirds span a 3/2. Tunings include 7edo, [[10edo]], and [[17edo]]. Its color name is Yoyoti. An obvious 2.3.11 interpretation of the generator is ~11/9, which leads to neutral or Luluti. | ||
; [[Augmented family]] ( | ; [[Augmented family]] (triploid monocot) | ||
: The augmented family tempers out the diesis of {{monzo| 7 0 -3 }} ([[128/125]]), the difference between three 5/4 major thirds and a 2/1 octave, and so identifies the major third with the third-octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]], which is an excellent tuning for augmented. It is the temperament that results in what is commonly called the "augmented scale" ([[3L 3s]]) in common 12edo-based music theory, as well as what is commonly called "[http://www.tcherepnin.com/alex/basic_elem1.htm#9step Tcherepnin's scale]" ([[3L 6s]]). Its color name is Triguti. | : The augmented family tempers out the diesis of {{monzo| 7 0 -3 }} ([[128/125]]), the difference between three 5/4 major thirds and a 2/1 octave, and so identifies the major third with the third-octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]], which is an excellent tuning for augmented. It is the temperament that results in what is commonly called the "augmented scale" ([[3L 3s]]) in common 12edo-based music theory, as well as what is commonly called "[http://www.tcherepnin.com/alex/basic_elem1.htm#9step Tcherepnin's scale]" ([[3L 6s]]). Its color name is Triguti. | ||
; [[Misty family]] ( | ; [[Misty family]] (triploid monocot) | ||
: The misty family tempers out the [[misty comma]] of {{monzo| 26 -12 -3 }}, the difference between the [[Pythagorean comma]] and a stack of three [[schisma]]s. The period is ~512/405 and the generator is ~3/2 (or alternatively ~135/128). 5/4 is equated to 8 periods minus 4 fifths, thus 5/4 is split into 4 equal parts, each 2 periods minus a fifth. Its color name is Sasa-triguti. | : The misty family tempers out the [[misty comma]] of {{monzo| 26 -12 -3 }}, the difference between the [[Pythagorean comma]] and a stack of three [[schisma]]s. The period is ~512/405 and the generator is ~3/2 (or alternatively ~135/128). 5/4 is equated to 8 periods minus 4 fifths, thus 5/4 is split into 4 equal parts, each 2 periods minus a fifth. Its color name is Sasa-triguti. | ||
; [[Porcupine family]] ( | ; [[Porcupine family]] (omega-tricot) | ||
: The porcupine family tempers out {{monzo| 1 -5 3 }} ([[250/243]]), the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It subdivides the fourth into three equal parts, each taken as an approximated 10/9, of which two approximate 6/5. It also manifests itself as the difference between three 6/5's and 16/9, as the difference between 10/9 and 27/25, and as the difference between 81/80 and 25/24. 5/4 is equated to 1 octave minus 5 generators. Some porcupine temperaments include [[15edo|15-]], [[22edo|22-]], [[37edo|37-]], and [[59edo]]. Its color name is Triyoti. An important 7-limit extension also tempers out 64/63. | : The porcupine family tempers out {{monzo| 1 -5 3 }} ([[250/243]]), the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It subdivides the fourth into three equal parts, each taken as an approximated 10/9, of which two approximate 6/5. It also manifests itself as the difference between three 6/5's and 16/9, as the difference between 10/9 and 27/25, and as the difference between 81/80 and 25/24. 5/4 is equated to 1 octave minus 5 generators. Some porcupine temperaments include [[15edo|15-]], [[22edo|22-]], [[37edo|37-]], and [[59edo]]. Its color name is Triyoti. An important 7-limit extension also tempers out 64/63. | ||
; [[Alphatricot family]] ( | ; [[Alphatricot family]] (alpha-tricot) | ||
: The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | : The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | ||
; [[Diminished family]] ( | ; [[Diminished family]] (tetraploid monocot) | ||
: The diminished family tempers out the major diesis or diminished comma, {{monzo| 3 4 -4 }} or [[648/625]], the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. 5/4 is equated to 1 fifth minus 1 period. Its color name is Quadguti. | : The diminished family tempers out the major diesis or diminished comma, {{monzo| 3 4 -4 }} or [[648/625]], the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. 5/4 is equated to 1 fifth minus 1 period. Its color name is Quadguti. | ||
; [[Undim family]] ( | ; [[Undim family]] (tetraploid monocot) | ||
: The undim family tempers out the [[undim comma]] of {{monzo| 41 -20 -4 }}, the difference between the Pythagorean comma and a stack of four schismas. Its color name is Trisa-quadguti. | : The undim family tempers out the [[undim comma]] of {{monzo| 41 -20 -4 }}, the difference between the Pythagorean comma and a stack of four schismas. Its color name is Trisa-quadguti. | ||
; Negri family ( | ; Negri family (omega-tetracot) | ||
: This tempers out the [[negri comma]], {{monzo| -14 3 4 }}. Its only member so far is [[negri]]. Its generator is ~16/15, four of which make ~4/3. 5/4 is equated to 3 generators. Its color name is Laquadyoti. | : This tempers out the [[negri comma]], {{monzo| -14 3 4 }}. Its only member so far is [[negri]]. Its generator is ~16/15, four of which make ~4/3. 5/4 is equated to 3 generators. Its color name is Laquadyoti. | ||
; [[Tetracot family]] ( | ; [[Tetracot family]] (tetracot) | ||
: The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by {{monzo| 5 -9 4 }} (20000/19683), the minimal diesis or [[tetracot comma]]. 5/4 is equated to 9 generators minus an octave. [[7edo]] can also be considered a tetracot tuning, as can [[20edo]], [[27edo]], [[34edo]], and [[41edo]]. Its color name is Saquadyoti. | : The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by {{monzo| 5 -9 4 }} (20000/19683), the minimal diesis or [[tetracot comma]]. 5/4 is equated to 9 generators minus an octave. [[7edo]] can also be considered a tetracot tuning, as can [[20edo]], [[27edo]], [[34edo]], and [[41edo]]. Its color name is Saquadyoti. | ||
; [[Smate family]] ( | ; [[Smate family]] (beta-tetracot) | ||
: This tempers out the [[symbolic comma]], {{monzo| 11 -1 -4 }} (2048/1875). Its generator is {{nowrap| ~5/4 {{=}} ~421{{c}} }}, four of which make ~8/3. Its color name is Saquadguti. | : This tempers out the [[symbolic comma]], {{monzo| 11 -1 -4 }} (2048/1875). Its generator is {{nowrap| ~5/4 {{=}} ~421{{c}} }}, four of which make ~8/3. Its color name is Saquadguti. | ||
; [[Vulture family]] ( | ; [[Vulture family]] (omega-tetracot) | ||
: This tempers out the [[vulture comma]], {{monzo| 24 -21 4 }}. Its generator is {{nowrap| ~320/243 {{=}} ~475{{c}} }}, four of which make ~3/1. 5/4 is equated to 21 generators minus 8 octaves. Its color name is Sasa-quadyoti. An obvious 7-limit interpretation of the generator is 21/16, which makes buzzard or Saquadruti. | : This tempers out the [[vulture comma]], {{monzo| 24 -21 4 }}. Its generator is {{nowrap| ~320/243 {{=}} ~475{{c}} }}, four of which make ~3/1. 5/4 is equated to 21 generators minus 8 octaves. Its color name is Sasa-quadyoti. An obvious 7-limit interpretation of the generator is 21/16, which makes buzzard or Saquadruti. | ||
; [[Quintile family]] ( | ; [[Quintile family]] (pentaploid monocot) | ||
: This tempers out the [[quintile comma]], 847288609443/838860800000 ({{monzo| -28 25 -5 }}). The period is ~59049/51200, and 5 periods make an octave. The generator is a fifth, or equivalently, 3/5 of an octave minus a fifth. This alternate generator is only about 18{{c}}, thus the scales have a very lopsided L/s ratio. 5/4 is equated to 2/5 of an octave minus 5 of these 18{{c}} generators. Its color name is Trila-quinguti. An obvious 7-limit interpretation of the generator is 8/7, which leads to Laquinzoti. | : This tempers out the [[quintile comma]], 847288609443/838860800000 ({{monzo| -28 25 -5 }}). The period is ~59049/51200, and 5 periods make an octave. The generator is a fifth, or equivalently, 3/5 of an octave minus a fifth. This alternate generator is only about 18{{c}}, thus the scales have a very lopsided L/s ratio. 5/4 is equated to 2/5 of an octave minus 5 of these 18{{c}} generators. Its color name is Trila-quinguti. An obvious 7-limit interpretation of the generator is 8/7, which leads to Laquinzoti. | ||
; [[Ripple family]] ( | ; [[Ripple family]] (omega-pentacot) | ||
: This tempers out the [[ripple comma]], 6561/6250 ({{monzo| -1 8 -5 }}), which equates a stack of four [[10/9]]'s with [[8/5]], and five of them with [[16/9]]. The generator is [[27/25]], two of which equals 10/9, three of which equals [[6/5]], and five of which equals [[4/3]]. 5/4 is equated to an octave minus 8 generators. As one might expect, [[12edo]] is about as accurate as it can be. Its color name is Quinguti. | : This tempers out the [[ripple comma]], 6561/6250 ({{monzo| -1 8 -5 }}), which equates a stack of four [[10/9]]'s with [[8/5]], and five of them with [[16/9]]. The generator is [[27/25]], two of which equals 10/9, three of which equals [[6/5]], and five of which equals [[4/3]]. 5/4 is equated to an octave minus 8 generators. As one might expect, [[12edo]] is about as accurate as it can be. Its color name is Quinguti. | ||
; [[Passion family]] ( | ; [[Passion family]] (omega-pentacot) | ||
: This tempers out the [[passion comma]], 262144/253125 ({{monzo| 18 -4 -5 }}), which equates a stack of four [[16/15]]'s with [[5/4]], and five of them with [[4/3]]. Its color name is Saquinguti. | : This tempers out the [[passion comma]], 262144/253125 ({{monzo| 18 -4 -5 }}), which equates a stack of four [[16/15]]'s with [[5/4]], and five of them with [[4/3]]. Its color name is Saquinguti. | ||
; [[Quintaleap family]] ( | ; [[Quintaleap family]] (omega-pentacot) | ||
: This tempers out the [[quintaleap comma]], {{monzo| 37 -16 -5 }}. The generator is ~135/128, five of them gives ~4/3, and sixteen of them gives [[5/2]]. Its color name is Trisa-quinguti. An obvious 17-limit interpretation of the generator is ~18/17, which makes Saquinsoti. | : This tempers out the [[quintaleap comma]], {{monzo| 37 -16 -5 }}. The generator is ~135/128, five of them gives ~4/3, and sixteen of them gives [[5/2]]. Its color name is Trisa-quinguti. An obvious 17-limit interpretation of the generator is ~18/17, which makes Saquinsoti. | ||
; [[Quindromeda family]] ( | ; [[Quindromeda family]] (omega-pentacot) | ||
: This tempers out the [[quindromeda comma]], {{monzo| 56 -28 -5 }}. The generator is ~4428675/4194304, five of them gives ~4/3, and 28 of them gives the fifth harmonic, [[5/1]]. Its color name is Quinsa-quinguti. An obvious 17-limit interpretation of the generator is ~18/17, which makes Saquinsoti. | : This tempers out the [[quindromeda comma]], {{monzo| 56 -28 -5 }}. The generator is ~4428675/4194304, five of them gives ~4/3, and 28 of them gives the fifth harmonic, [[5/1]]. Its color name is Quinsa-quinguti. An obvious 17-limit interpretation of the generator is ~18/17, which makes Saquinsoti. | ||
; [[Amity family]] ( | ; [[Amity family]] (gamma-pentacot) | ||
: This tempers out the [[amity comma]], 1600000/1594323 ({{monzo| 9 -13 5 }}). The generator is {{nowrap| 243/200 {{=}} ~339.5{{c}} }}, five of which make ~8/3. 5/4 is equated to 4 octaves minus 13 generators, or 2 fifths minus 3 generators. Its color name is Saquinyoti. An obvious 11-limit interpretation of the generator is 11/9, which makes Saquinloti. An obvious 13-limit interpretation of the generator is 39/32, which makes Lala-quinthoti. | : This tempers out the [[amity comma]], 1600000/1594323 ({{monzo| 9 -13 5 }}). The generator is {{nowrap| 243/200 {{=}} ~339.5{{c}} }}, five of which make ~8/3. 5/4 is equated to 4 octaves minus 13 generators, or 2 fifths minus 3 generators. Its color name is Saquinyoti. An obvious 11-limit interpretation of the generator is 11/9, which makes Saquinloti. An obvious 13-limit interpretation of the generator is 39/32, which makes Lala-quinthoti. | ||
; [[Magic family]] ( | ; [[Magic family]] (alpha-pentacot) | ||
: The magic family tempers out {{monzo| -10 -1 5 }} (3125/3072), known as the [[magic comma]] or small diesis, which is the difference between five 5/4's (3125/2048) and a 3/1. The generator is itself an approximate 5/4. The magic family includes [[16edo|16-]], [[19edo|19-]], [[22edo|22-]], [[25edo|25-]], and [[41edo]] among its possible tunings, with the last being near-optimal. Its color name is Laquinyoti. | : The magic family tempers out {{monzo| -10 -1 5 }} (3125/3072), known as the [[magic comma]] or small diesis, which is the difference between five 5/4's (3125/2048) and a 3/1. The generator is itself an approximate 5/4. The magic family includes [[16edo|16-]], [[19edo|19-]], [[22edo|22-]], [[25edo|25-]], and [[41edo]] among its possible tunings, with the last being near-optimal. Its color name is Laquinyoti. | ||
; [[Fifive family]] ( | ; [[Fifive family]] (diploid pentacot) | ||
: This tempers out the [[fifive comma]], {{monzo| -1 -14 10 }} (9765625/9565938). The period is ~4374/3125 ({{monzo| 1 7 -5 }}), two of which make an octave. The generator is ~27/25, five of which make ~3/2. 5/4 is equated to 7 generators minus 1 period. Its color name is Saquinbiyoti. | : This tempers out the [[fifive comma]], {{monzo| -1 -14 10 }} (9765625/9565938). The period is ~4374/3125 ({{monzo| 1 7 -5 }}), two of which make an octave. The generator is ~27/25, five of which make ~3/2. 5/4 is equated to 7 generators minus 1 period. Its color name is Saquinbiyoti. | ||
; [[Quintosec family]] ( | ; [[Quintosec family]] (pentaploid dicot) | ||
: This tempers out the [[quintosec comma]], 140737488355328/140126044921875 ({{monzo| 47 -15 -10 }}). The period is ~524288/455625 ({{monzo| 19 -6 -4 }}), five of which equals an octave. The generator is ~16/15. A period plus a generator makes half a fifth. 5/4 is equated to 3 periods minus 3 generators. Its color name is Quadsa-quinbiguti. An obvious 7-limit interpretation of the period is 8/7. | : This tempers out the [[quintosec comma]], 140737488355328/140126044921875 ({{monzo| 47 -15 -10 }}). The period is ~524288/455625 ({{monzo| 19 -6 -4 }}), five of which equals an octave. The generator is ~16/15. A period plus a generator makes half a fifth. 5/4 is equated to 3 periods minus 3 generators. Its color name is Quadsa-quinbiguti. An obvious 7-limit interpretation of the period is 8/7. | ||
; [[Trisedodge family]] ( | ; [[Trisedodge family]] (pentaploid omega-tricot) | ||
: This tempers out the [[trisedodge comma]], 30958682112/30517578125 ({{monzo| 19 10 -15 }}). The period is {{nowrap| ~144/125 {{=}} 240{{c}} }}. The generator is ~6/5. Six periods minus three generators equals ~4/3. 5/4 is equated to 2 generators minus 1 period. Its color name is Saquintriguti. An obvious 7-limit interpretation of the period is 8/7. | : This tempers out the [[trisedodge comma]], 30958682112/30517578125 ({{monzo| 19 10 -15 }}). The period is {{nowrap| ~144/125 {{=}} 240{{c}} }}. The generator is ~6/5. Six periods minus three generators equals ~4/3. 5/4 is equated to 2 generators minus 1 period. Its color name is Saquintriguti. An obvious 7-limit interpretation of the period is 8/7. | ||
; Ampersand family ( | ; Ampersand family (hexacot) | ||
: This tempers out the [[ampersand comma]], 34171875/33554432 ({{monzo| -25 7 6 }}). Its only member is [[ampersand]]. The generator is ~16/15, of which six make ~3/2. 5/4 is equated to 1 octave minus 7 generators. Its color name is Lala-tribiyoti. If the generator is also equated to ~15/14, and three generators to ~11/9, one gets the [[miracle]] temperament. | : This tempers out the [[ampersand comma]], 34171875/33554432 ({{monzo| -25 7 6 }}). Its only member is [[ampersand]]. The generator is ~16/15, of which six make ~3/2. 5/4 is equated to 1 octave minus 7 generators. Its color name is Lala-tribiyoti. If the generator is also equated to ~15/14, and three generators to ~11/9, one gets the [[miracle]] temperament. | ||
; [[Kleismic family]] ( | ; [[Kleismic family]] (alpha-hexacot) | ||
: The kleismic family of temperaments tempers out the [[15625/15552|kleisma]], 15625/15552 ({{monzo| -6 -5 6 }}), which is the difference between six 6/5's and 3/1. It takes a slightly sharpened minor third as a generator, optimally tuned about 1.4 cents sharp. 5/4 is equated to 5 generators minus 1 octave. The kleismic family includes [[15edo|15-]], [[19edo|19-]], [[34edo|34-]], [[49edo|49-]], [[53edo|53-]], [[72edo|72-]], [[87edo|87-]] and [[140edo]] among its possible tunings. Its color name is Tribiyoti. | : The kleismic family of temperaments tempers out the [[15625/15552|kleisma]], 15625/15552 ({{monzo| -6 -5 6 }}), which is the difference between six 6/5's and 3/1. It takes a slightly sharpened minor third as a generator, optimally tuned about 1.4 cents sharp. 5/4 is equated to 5 generators minus 1 octave. The kleismic family includes [[15edo|15-]], [[19edo|19-]], [[34edo|34-]], [[49edo|49-]], [[53edo|53-]], [[72edo|72-]], [[87edo|87-]] and [[140edo]] among its possible tunings. Its color name is Tribiyoti. | ||
; [[Semicomma family|Orson or semicomma family]] ( | ; [[Semicomma family|Orson or semicomma family]] (alpha-heptacot) | ||
: The [[semicomma]] (also known as Fokker's comma), 2109375/2097152 ({{monzo| -21 3 7 }}), is tempered out by the members of the semicomma family. Its generator is ~75/64, seven of which equals ~3/1. 5/4 is equated to 1 octave minus 3 generators. Its color name is Lasepyoti. Its generator has a natural interpretation as ~7/6, leading to the [[orwell|orwell or Sepruti]] temperament. | : The [[semicomma]] (also known as Fokker's comma), 2109375/2097152 ({{monzo| -21 3 7 }}), is tempered out by the members of the semicomma family. Its generator is ~75/64, seven of which equals ~3/1. 5/4 is equated to 1 octave minus 3 generators. Its color name is Lasepyoti. Its generator has a natural interpretation as ~7/6, leading to the [[orwell|orwell or Sepruti]] temperament. | ||
; [[Wesley family]] ( | ; [[Wesley family]] (delta-heptacot) | ||
: This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound fourth of ~16/3. 5/4 is equated to 1 octave minus 2 generators. Its color name is Lasepyobiti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Lasepruti temperament. An obvious 3-limit interpretation of the generator is 81/64, implying [[29edo]]. | : This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound fourth of ~16/3. 5/4 is equated to 1 octave minus 2 generators. Its color name is Lasepyobiti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Lasepruti temperament. An obvious 3-limit interpretation of the generator is 81/64, implying [[29edo]]. | ||
; [[Sensipent family]] ( | ; [[Sensipent family]] (beta-heptacot) | ||
: The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound fifth of ~6/1. 5/4 is equated to 9 generators minus 3 octaves. Tunings include [[8edo]], [[19edo]], [[46edo]], and [[65edo]]. Its color name is Sepguti. An obvious 7-limit interpretation of the generator is 9/7, leading to the | : The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound fifth of ~6/1. 5/4 is equated to 9 generators minus 3 octaves. Tunings include [[8edo]], [[19edo]], [[46edo]], and [[65edo]]. Its color name is Sepguti. An obvious 7-limit interpretation of the generator is 9/7, leading to the full sensi temperament. | ||
; [[Vishnuzmic family]] ( | ; [[Vishnuzmic family]] (diploid omega-heptacot) | ||
: This tempers out the [[vishnuzma]], {{monzo| 23 6 -14 }}, or the amount by which seven chromatic semitones (25/24) fall short of a perfect fourth (4/3), or (4/3)/(25/24)<sup>7</sup>. The period is ~{{monzo| -11 -3 7 }} and the generator is ~25/24. 5/4 is equated to 1 period minus 3 generators. Its color name is Sasepbiguti. | : This tempers out the [[vishnuzma]], {{monzo| 23 6 -14 }}, or the amount by which seven chromatic semitones (25/24) fall short of a perfect fourth (4/3), or (4/3)/(25/24)<sup>7</sup>. The period is ~{{monzo| -11 -3 7 }} and the generator is ~25/24. 5/4 is equated to 1 period minus 3 generators. Its color name is Sasepbiguti. | ||
; [[Unicorn family]] ( | ; [[Unicorn family]] (omega-octacot) | ||
: This tempers out the [[unicorn comma]], 1594323/1562500 ({{monzo| -2 13 -8 }}). The generator is {{nowrap| ~250/243 {{=}} ~62{{c}} }} and eight of them equal ~4/3. Its color name is Laquadbiguti. | : This tempers out the [[unicorn comma]], 1594323/1562500 ({{monzo| -2 13 -8 }}). The generator is {{nowrap| ~250/243 {{=}} ~62{{c}} }} and eight of them equal ~4/3. Its color name is Laquadbiguti. | ||
; [[Würschmidt family]] ( | ; [[Würschmidt family]] (beta-octacot) | ||
: The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect fifth); that is, {{nowrap| (5/4)<sup>8</sup>⋅(393216/390625) {{=}} 6 }}. It tends to generate the same mos scales as the [[magic]] temperament, but is tuned slightly more accurately. Both [[31edo]] and [[34edo]] can be used as würschmidt tunings, as can [[65edo]], which is quite accurate. Its color name is Saquadbiguti. | : The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect fifth); that is, {{nowrap| (5/4)<sup>8</sup>⋅(393216/390625) {{=}} 6 }}. It tends to generate the same mos scales as the [[magic]] temperament, but is tuned slightly more accurately. Both [[31edo]] and [[34edo]] can be used as würschmidt tunings, as can [[65edo]], which is quite accurate. Its color name is Saquadbiguti. | ||
; [[Escapade family]] ( | ; [[Escapade family]] (omega-enneacot) | ||
: This tempers out the [[escapade comma]], {{monzo| 32 -7 -9 }}, which is the difference between nine just major thirds and seven just fourths. The generator is {{monzo| -14 3 4 }} of ~55{{c}} and nine of them equal ~4/3. Seven of them equal ~5/4, thus two of them equal ~16/15. Its color name is Sasa-tritriguti. An obvious 11-limit interpretation of the generator is 33/32, leading to the Trisa-tritriluti temperament. | : This tempers out the [[escapade comma]], {{monzo| 32 -7 -9 }}, which is the difference between nine just major thirds and seven just fourths. The generator is {{monzo| -14 3 4 }} of ~55{{c}} and nine of them equal ~4/3. Seven of them equal ~5/4, thus two of them equal ~16/15. Its color name is Sasa-tritriguti. An obvious 11-limit interpretation of the generator is 33/32, leading to the Trisa-tritriluti temperament. | ||
; [[Mabila family]] ( | ; [[Mabila family]] (epsilon-decacot) | ||
: The mabila family tempers out the [[mabila comma]], {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound fourth of ~64/3. Its color name is Sasa-quinbiguti. An obvious 11-limit interpretation of the generator is ~15/11. | : The mabila family tempers out the [[mabila comma]], {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound fourth of ~64/3. Its color name is Sasa-quinbiguti. An obvious 11-limit interpretation of the generator is ~15/11. | ||
; [[Sycamore family]] ( | ; [[Sycamore family]] (hendecacot) | ||
: The sycamore family tempers out the [[sycamore comma]], {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | : The sycamore family tempers out the [[sycamore comma]], {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | ||
; [[Quartonic family]] ( | ; [[Quartonic family]] (omega-hendecacot) | ||
: The quartonic family tempers out the [[quartonic comma]], {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | : The quartonic family tempers out the [[quartonic comma]], {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | ||
; [[Lafa family]] ( | ; [[Lafa family]] (alpha-dodecacot) | ||
: This tempers out the [[lafa comma]], {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | : This tempers out the [[lafa comma]], {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | ||
; [[Ditonmic family]] ( | ; [[Ditonmic family]] (eta-triakaidecacot) | ||
: This tempers out the [[ditonma]], {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound fourth. 5/4 is equated to 1 octave minus 2 generators. An obvious 3-limit interpretation of the generator is 81/64, which implies 53edo, which is a good tuning for this high-accuracy family of temperaments. Its color name is Lala-theyoti. | : This tempers out the [[ditonma]], {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound fourth. 5/4 is equated to 1 octave minus 2 generators. An obvious 3-limit interpretation of the generator is 81/64, which implies 53edo, which is a good tuning for this high-accuracy family of temperaments. Its color name is Lala-theyoti. | ||
; [[Luna family]] ( | ; [[Luna family]] (iota-beta-pentekaidecacot) | ||
: This tempers out the [[luna comma]], {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is ~{{monzo| 18 -1 -7 }} at ~193{{c}}. Two generators equals ~5/4, and fifteen generators equals a double-compound fourth of ~16/3. Its color name is Sasa-quintriguti. | : This tempers out the [[luna comma]], {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is ~{{monzo| 18 -1 -7 }} at ~193{{c}}. Two generators equals ~5/4, and fifteen generators equals a double-compound fourth of ~16/3. Its color name is Sasa-quintriguti. | ||
; [[Vavoom family]] ( | ; [[Vavoom family]] (alpha-heptakaidecacot) | ||
: This tempers out the [[vavoom comma]], {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | : This tempers out the [[vavoom comma]], {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | ||
; [[Minortonic family]] ( | ; [[Minortonic family]] (beta-heptakaidecacot) | ||
: This tempers out the [[minortone comma]], {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound fifth (~6/1). 5/4 is equated to 35 generators minus 5 octaves. Its color name is Trila-seguti. | : This tempers out the [[minortone comma]], {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound fifth (~6/1). 5/4 is equated to 35 generators minus 5 octaves. Its color name is Trila-seguti. | ||
; [[Maja family]] ( | ; [[Maja family]] (iota-heptakaidecacot) | ||
: This tempers out the [[maja comma]], {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound fourth. 5/4 is equated to 9 octaves minus 23 generators. Its color name is Saseyoti. | : This tempers out the [[maja comma]], {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound fourth. 5/4 is equated to 9 octaves minus 23 generators. Its color name is Saseyoti. | ||
; [[Maquila family]] ( | ; [[Maquila family]] (zeta-heptakaidecacot) | ||
: This tempers out the [[maquila comma]], {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound fifth. 5/4 is equated to 3 octaves minus 6 generators. Its color name is Trisa-seguti. An obvious 11-limit interpretation of the generator is 11/8, leading to the Lala-seloti temperament. However, Lala-seloti is not nearly as accurate as Trisa-seguti. | : This tempers out the [[maquila comma]], {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound fifth. 5/4 is equated to 3 octaves minus 6 generators. Its color name is Trisa-seguti. An obvious 11-limit interpretation of the generator is 11/8, leading to the Lala-seloti temperament. However, Lala-seloti is not nearly as accurate as Trisa-seguti. | ||
; [[Gammic family]] ( | ; [[Gammic family]] (icosacot) | ||
: The gammic family tempers out the [[gammic comma]], {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | : The gammic family tempers out the [[gammic comma]], {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | ||
=== Clans defined by a 2.3.7 comma === | === Clans defined by a 2.3.7 comma === | ||
Line 178: | Line 178: | ||
If a 5-limit comma defines a family of rank-2 temperaments, then we might say a comma belonging to another [[subgroup]] of the 7-limit can define a clan. In particular we might say a triprime comma (one with exactly three primes in the factorization) can define a clan. We can modify the definition of [[normal lists|normal comma list]] for clans by changing the ordering of prime numbers, and using this to sort out clan relationships. | If a 5-limit comma defines a family of rank-2 temperaments, then we might say a comma belonging to another [[subgroup]] of the 7-limit can define a clan. In particular we might say a triprime comma (one with exactly three primes in the factorization) can define a clan. We can modify the definition of [[normal lists|normal comma list]] for clans by changing the ordering of prime numbers, and using this to sort out clan relationships. | ||
; [[Archytas clan]] ( | ; [[Archytas clan]] (monocot) | ||
: This clan tempers out Archytas' comma, [[64/63]]. It equates 7/4 with 16/9. The clan consists of rank-2 temperaments, and should not be confused with the [[archytas family]] of rank-3 temperaments. Its color name is Ruti. Its best downward extension is [[superpyth]]. | : This clan tempers out Archytas' comma, [[64/63]]. It equates 7/4 with 16/9. The clan consists of rank-2 temperaments, and should not be confused with the [[archytas family]] of rank-3 temperaments. Its color name is Ruti. Its best downward extension is [[superpyth]]. | ||
; [[Trienstonic clan]] ( | ; [[Trienstonic clan]] (monocot) | ||
: This clan tempers out the septimal third-tone, [[28/27]], a low-accuracy temperament that equates 7/6 with 9/8, and 7/4 with 27/16. Its color name is Zoti. | : This clan tempers out the septimal third-tone, [[28/27]], a low-accuracy temperament that equates 7/6 with 9/8, and 7/4 with 27/16. Its color name is Zoti. | ||
; Harrison clan ( | ; Harrison clan (monocot) | ||
: This clan tempers out [[Harrison's comma]], {{monzo| -13 10 0 -1 }} (59049/57344). It equates 7/4 to an augmented sixth. Its color name is Laruti. Its best downward extension is [[septimal meantone]]. | : This clan tempers out [[Harrison's comma]], {{monzo| -13 10 0 -1 }} (59049/57344). It equates 7/4 to an augmented sixth. Its color name is Laruti. Its best downward extension is [[septimal meantone]]. | ||
; [[Garischismic clan]] ( | ; [[Garischismic clan]] (monocot) | ||
: This clan tempers out the [[garischisma]], {{monzo| 25 -14 0 -1 }} (33554432/33480783). It equates 8/7 to two apotomes ({{monzo| -11 7 }}, 2187/2048) and 7/4 to a double-diminished octave {{monzo| 23 -14 }}. This clan includes [[vulture family #Vulture|vulture]], [[breedsmic temperaments #Newt|newt]], [[schismatic family #Garibaldi|garibaldi]], [[landscape microtemperaments #Sextile|sextile]], and [[canousmic temperaments #Satin|satin]]. Its color name is Sasaruti. | : This clan tempers out the [[garischisma]], {{monzo| 25 -14 0 -1 }} (33554432/33480783). It equates 8/7 to two apotomes ({{monzo| -11 7 }}, 2187/2048) and 7/4 to a double-diminished octave {{monzo| 23 -14 }}. This clan includes [[vulture family #Vulture|vulture]], [[breedsmic temperaments #Newt|newt]], [[schismatic family #Garibaldi|garibaldi]], [[landscape microtemperaments #Sextile|sextile]], and [[canousmic temperaments #Satin|satin]]. Its color name is Sasaruti. | ||
; Sasazoti clan ( | ; Sasazoti clan (monocot) | ||
: This clan tempers out the [[leapfrog comma]], {{monzo| 21 -15 0 1 }} (14680064/14348907). It equates 7/6 to two apotomes and 7/4 to double augmented fifth. This clan includes [[hemifamity temperaments #Leapday|leapday]], [[sensamagic clan #Leapweek|leapweek]] and [[diaschismic family #Srutal|srutal]]. | : This clan tempers out the [[leapfrog comma]], {{monzo| 21 -15 0 1 }} (14680064/14348907). It equates 7/6 to two apotomes and 7/4 to double augmented fifth. This clan includes [[hemifamity temperaments #Leapday|leapday]], [[sensamagic clan #Leapweek|leapweek]] and [[diaschismic family #Srutal|srutal]]. | ||
; Laruruti clan ( | ; Laruruti clan (diploid monocot) | ||
: This clan tempers out the Laruru comma, {{monzo| -7 8 0 -2 }} (6561/6272). Two ~81/56 periods equal an octave. The generator is ~3/2, and four generators minus three periods equals ~7/4. The major second ~9/8 is divided in half, with each half equated to ~28/27. See also the Diaschismic or Saguguti temperament and the Jubilismic or Biruyoti temperament. | : This clan tempers out the Laruru comma, {{monzo| -7 8 0 -2 }} (6561/6272). Two ~81/56 periods equal an octave. The generator is ~3/2, and four generators minus three periods equals ~7/4. The major second ~9/8 is divided in half, with each half equated to ~28/27. See also the Diaschismic or Saguguti temperament and the Jubilismic or Biruyoti temperament. | ||
; [[Semaphoresmic clan]] ( | ; [[Semaphoresmic clan]] (omega-dicot) | ||
: This clan tempers out the large septimal diesis, [[49/48]]. Its generator is ~8/7 or ~7/6. Its color name is Zozoti. Its best downward extension is [[godzilla]]. See also [[semaphore]]. | : This clan tempers out the large septimal diesis, [[49/48]]. Its generator is ~8/7 or ~7/6. Its color name is Zozoti. Its best downward extension is [[godzilla]]. See also [[semaphore]]. | ||
; Parahemif clan ( | ; Parahemif clan (dicot) | ||
: This clan tempers out the [[parahemif comma]], {{monzo| 15 -13 0 2 }} (1605632/1594323), and includes the [[hemif]] temperament and its strong extension [[hemififths]]. 7/4 is equated to 13 generators minus 3 octaves. Its color name is Sasa-zozoti. An obvious 11-limit interpretation of the ~351{{c}} generator is 11/9, leading to the Luluti temperament. | : This clan tempers out the [[parahemif comma]], {{monzo| 15 -13 0 2 }} (1605632/1594323), and includes the [[hemif]] temperament and its strong extension [[hemififths]]. 7/4 is equated to 13 generators minus 3 octaves. Its color name is Sasa-zozoti. An obvious 11-limit interpretation of the ~351{{c}} generator is 11/9, leading to the Luluti temperament. | ||
; Triruti clan ( | ; Triruti clan (triploid monocot) | ||
: This clan tempers out the Triru comma, {{monzo| -1 6 0 -3 }} (729/686), a low-accuracy temperament. Three ~9/7 periods equals an octave. The generator is ~3/2, and two generators minus a period equals ~7/4. An obvious 5-limit interpretation of the ~400{{c}} period is 5/4, leading to the [[augmented]] temperament. | : This clan tempers out the Triru comma, {{monzo| -1 6 0 -3 }} (729/686), a low-accuracy temperament. Three ~9/7 periods equals an octave. The generator is ~3/2, and two generators minus a period equals ~7/4. An obvious 5-limit interpretation of the ~400{{c}} period is 5/4, leading to the [[augmented]] temperament. | ||
; [[Gamelismic clan]] ( | ; [[Gamelismic clan]] (tricot) | ||
: This clan tempers out the [[gamelisma]], {{monzo| -10 1 0 3 }} (1029/1024). Three ~8/7 generators equals a fifth. 7/4 is equated to an octave minus a generator. Five generators is slightly flat of 2/1, making this a [[cluster temperament]]. Its color name is Latrizoti. See also Sawati and Lasepzoti. | : This clan tempers out the [[gamelisma]], {{monzo| -10 1 0 3 }} (1029/1024). Three ~8/7 generators equals a fifth. 7/4 is equated to an octave minus a generator. Five generators is slightly flat of 2/1, making this a [[cluster temperament]]. Its color name is Latrizoti. See also Sawati and Lasepzoti. | ||
: A particularly noteworthy member of the gamelismic clan is miracle, but other members include valentine, unidec, mothra, rodan, and hemithirds. Miracle divides the fifth into 6 equal steps, thus it is a weak extension. Its 21-note scale called Blackjack and 31-note scale called Canasta have some useful properties. It is the most efficient 11-limit temperament for many purposes, with a tuning close to 72edo. | : A particularly noteworthy member of the gamelismic clan is miracle, but other members include valentine, unidec, mothra, rodan, and hemithirds. Miracle divides the fifth into 6 equal steps, thus it is a weak extension. Its 21-note scale called Blackjack and 31-note scale called Canasta have some useful properties. It is the most efficient 11-limit temperament for many purposes, with a tuning close to 72edo. | ||
; Trizoti clan ( | ; Trizoti clan (tricot) | ||
: This clan tempers out the Trizo comma, {{monzo| -2 -4 0 3 }} (343/324), a low-accuracy temperament. Three ~7/6 generators equals a fifth, and four equal ~7/4. An obvious interpretation of the ~234{{c}} generator is 8/7, leading to the much more accurate gamelismic or Latrizoti temperament. | : This clan tempers out the Trizo comma, {{monzo| -2 -4 0 3 }} (343/324), a low-accuracy temperament. Three ~7/6 generators equals a fifth, and four equal ~7/4. An obvious interpretation of the ~234{{c}} generator is 8/7, leading to the much more accurate gamelismic or Latrizoti temperament. | ||
; Latriru clan ( | ; Latriru clan (alpha-tricot) | ||
: This clan tempers out the [[lee comma]], {{monzo| -9 11 0 -3 }} (177147/175616). The generator is {{nowrap| ~112/81 {{=}} ~566{{c}} }}, and three such generators equals ~8/3. 7/4 is equated to 11 generators minus 5 octaves. Its color name is Latriruti. An obvious full 7-limit interpretation of the generator is 7/5, leading to the [[liese]] temperament, which is a weak extension of meantone. | : This clan tempers out the [[lee comma]], {{monzo| -9 11 0 -3 }} (177147/175616). The generator is {{nowrap| ~112/81 {{=}} ~566{{c}} }}, and three such generators equals ~8/3. 7/4 is equated to 11 generators minus 5 octaves. Its color name is Latriruti. An obvious full 7-limit interpretation of the generator is 7/5, leading to the [[liese]] temperament, which is a weak extension of meantone. | ||
; [[Stearnsmic clan]] ( | ; [[Stearnsmic clan]] (diploid omega-tricot) | ||
: This clan temper out the [[stearnsma]], {{monzo| 1 10 0 -6 }} (118098/117649). The period is {{nowrap| ~486/343 {{=}} ~600{{c}} }}. The generator is {{nowrap| ~9/7 {{=}} ~434{{c}} }}, or alternatively one period minus ~9/7, which equals {{nowrap| ~54/49 {{=}} ~166{{c}} }}. Three of these alternate generators equal ~4/3. 7/4 is equated to five ~9/7 generators minus an octave. Its color name is Latribiruti. Equating the ~54/49 generator to ~10/9 creates a weak extension of the [[porcupine]] temperament, as does equating the period to ~7/5. | : This clan temper out the [[stearnsma]], {{monzo| 1 10 0 -6 }} (118098/117649). The period is {{nowrap| ~486/343 {{=}} ~600{{c}} }}. The generator is {{nowrap| ~9/7 {{=}} ~434{{c}} }}, or alternatively one period minus ~9/7, which equals {{nowrap| ~54/49 {{=}} ~166{{c}} }}. Three of these alternate generators equal ~4/3. 7/4 is equated to five ~9/7 generators minus an octave. Its color name is Latribiruti. Equating the ~54/49 generator to ~10/9 creates a weak extension of the [[porcupine]] temperament, as does equating the period to ~7/5. | ||
; Skwaresmic clan ( | ; Skwaresmic clan (beta-tetracot) | ||
: This clan tempers out the [[skwaresma]], {{monzo| -3 9 0 -4 }} (19683/19208). its generator is ~9/7. Four generators equals ~8/3. 7/4 is equated to 4 octaves minus 9 generators. Its color name is Laquadruti. This clan includes as a strong extension the [[squares]] temperament, which is a weak extension of meantone. | : This clan tempers out the [[skwaresma]], {{monzo| -3 9 0 -4 }} (19683/19208). its generator is ~9/7. Four generators equals ~8/3. 7/4 is equated to 4 octaves minus 9 generators. Its color name is Laquadruti. This clan includes as a strong extension the [[squares]] temperament, which is a weak extension of meantone. | ||
; [[Buzzardsmic clan]] ( | ; [[Buzzardsmic clan]] (alpha-tetracot) | ||
: This clan tempers out the [[buzzardsma]], {{monzo| 16 -3 0 -4 }} (65536/64827). Its generator is ~21/16. Four generators makes ~3/1. 7/4 is equated to 2 octaves minus 3 generators. Its color name is Saquadruti. This clan includes as a strong extension the [[Vulture family #Septimal vulture|vulture]] temperament, which is in the vulture family. | : This clan tempers out the [[buzzardsma]], {{monzo| 16 -3 0 -4 }} (65536/64827). Its generator is ~21/16. Four generators makes ~3/1. 7/4 is equated to 2 octaves minus 3 generators. Its color name is Saquadruti. This clan includes as a strong extension the [[Vulture family #Septimal vulture|vulture]] temperament, which is in the vulture family. | ||
; [[Cloudy clan]] ( | ; [[Cloudy clan]] (pentaploid monocot) | ||
: This clan tempers out the [[cloudy comma]], {{monzo| -14 0 0 5 }} (16807/16384). It has a period of 1/5 octave, which represents ~8/7. The generator is ~3/2. Unlike the blackwood or Sawati family, ~3/2 is not equated with three-fifths of an octave, resulting in very small intervals. Its color name is Laquinzoti. | : This clan tempers out the [[cloudy comma]], {{monzo| -14 0 0 5 }} (16807/16384). It has a period of 1/5 octave, which represents ~8/7. The generator is ~3/2. Unlike the blackwood or Sawati family, ~3/2 is not equated with three-fifths of an octave, resulting in very small intervals. Its color name is Laquinzoti. | ||
; Quinruti clan ( | ; Quinruti clan (pentacot) | ||
: This clan tempers out the [[bleu comma]], {{monzo| 3 7 0 -5 }} (17496/16807). The ~54/49 generator is about 139{{c}}. Two of them equal ~7/6, three equal ~9/7, five equal ~3/2, and seven equal ~7/4. | : This clan tempers out the [[bleu comma]], {{monzo| 3 7 0 -5 }} (17496/16807). The ~54/49 generator is about 139{{c}}. Two of them equal ~7/6, three equal ~9/7, five equal ~3/2, and seven equal ~7/4. | ||
; Saquinzoti clan ( | ; Saquinzoti clan (alpha-pentacot) | ||
: This clan tempers out the Saquinzo comma, {{monzo| 5 -12 0 5 }} (537824/531441). Its generator is {{nowrap| ~243/196 {{=}} ~380{{c}} }}. Five generators makes ~3/1. 7/4 is equated to 12 generators minus 3 octaves. An obvious 5-limit interpretation of the generator is 5/4, leading to the [[magic]] temperament, which is in the magic family. | : This clan tempers out the Saquinzo comma, {{monzo| 5 -12 0 5 }} (537824/531441). Its generator is {{nowrap| ~243/196 {{=}} ~380{{c}} }}. Five generators makes ~3/1. 7/4 is equated to 12 generators minus 3 octaves. An obvious 5-limit interpretation of the generator is 5/4, leading to the [[magic]] temperament, which is in the magic family. | ||
; Lasepzoti clan ( | ; Lasepzoti clan (epsilon-heptacot) | ||
: This clan tempers out the Lasepzo comma {{monzo| -18 -1 0 7 }} (823543/786432). Its generator is ~8/7. Six generators equals ~7/3, and seven generators equals ~8/3. Three generators is ~30{{c}} sharp of 3/2, and five generators is ~15{{c}} sharp of 2/1, making this a [[cluster temperament]]. See also Sawati and Latrizoti. | : This clan tempers out the Lasepzo comma {{monzo| -18 -1 0 7 }} (823543/786432). Its generator is ~8/7. Six generators equals ~7/3, and seven generators equals ~8/3. Three generators is ~30{{c}} sharp of 3/2, and five generators is ~15{{c}} sharp of 2/1, making this a [[cluster temperament]]. See also Sawati and Latrizoti. | ||
; Septiness clan ( | ; Septiness clan (epsilon-heptacot) | ||
: This clan tempers out the [[septiness comma]] {{monzo| 26 -4 0 -7 }} (67108864/66706983). Its generator is ~147/128, four of them gives ~7/4, and seven of them gives ~8/3. Five generators is ~12.5¢ sharp of 2/1, making this a [[cluster temperament]]. Its color name is Sasasepruti. | : This clan tempers out the [[septiness comma]] {{monzo| 26 -4 0 -7 }} (67108864/66706983). Its generator is ~147/128, four of them gives ~7/4, and seven of them gives ~8/3. Five generators is ~12.5¢ sharp of 2/1, making this a [[cluster temperament]]. Its color name is Sasasepruti. | ||
; Sepruti clan ( | ; Sepruti clan (alpha-heptacot) | ||
: This clan tempers out the Sepru comma, {{monzo| 7 8 0 -7 }} (839808/823543). Its generator is ~7/6. Seven generators equals ~3/1. 7/4 is equated to 8 generators minus 1 octave. This clan includes as a strong extension the [[orwell]] temperament, which is in the semicomma family. | : This clan tempers out the Sepru comma, {{monzo| 7 8 0 -7 }} (839808/823543). Its generator is ~7/6. Seven generators equals ~3/1. 7/4 is equated to 8 generators minus 1 octave. This clan includes as a strong extension the [[orwell]] temperament, which is in the semicomma family. | ||
; [[Septiennealimmal clan]] ( | ; [[Septiennealimmal clan]] (enneaploid monocot) | ||
: This clan tempers out the [[septimal ennealimma|septiennealimma]], {{monzo| -11 -9 0 9 }} (40353607/40310784). It has a period of 1/9 octave, which represents ~7/6. The generator is ~3/2. This clan includes a number of regular temperaments including [[enneaportent]], [[ennealimmal]], and [[novemkleismic]]. Its color name is Tritrizoti. | : This clan tempers out the [[septimal ennealimma|septiennealimma]], {{monzo| -11 -9 0 9 }} (40353607/40310784). It has a period of 1/9 octave, which represents ~7/6. The generator is ~3/2. This clan includes a number of regular temperaments including [[enneaportent]], [[ennealimmal]], and [[novemkleismic]]. Its color name is Tritrizoti. | ||
Line 248: | Line 248: | ||
Color name: ila. See also [[subgroup temperaments]]. | Color name: ila. See also [[subgroup temperaments]]. | ||
; Lulubiti clan ( | ; Lulubiti clan (diploid monocot) | ||
: This low-accuracy 2.3.11 clan tempers out the Alpharabian limma, [[128/121]]. Both 11/8 and 16/11 are equated to half-octave period. This clan includes as a strong extension the pajaric temperament, which is in the diaschismic family. | : This low-accuracy 2.3.11 clan tempers out the Alpharabian limma, [[128/121]]. Both 11/8 and 16/11 are equated to half-octave period. This clan includes as a strong extension the pajaric temperament, which is in the diaschismic family. | ||
; [[Rastmic clan]] ( | ; [[Rastmic clan]] (dicot) | ||
: This 2.3.11 clan tempers out [[243/242]] ({{monzo| -1 5 0 0 -2 }}). Its generator is ~11/9. Two generators equals ~3/2. 11/8 is equated to 5 generators minus an octave. This clan includes as a strong extension the [[dicot]] temperament, which is in the dicot family. Its color name is Luluti. | : This 2.3.11 clan tempers out [[243/242]] ({{monzo| -1 5 0 0 -2 }}). Its generator is ~11/9. Two generators equals ~3/2. 11/8 is equated to 5 generators minus an octave. This clan includes as a strong extension the [[dicot]] temperament, which is in the dicot family. Its color name is Luluti. | ||
; [[Nexus clan]] ( | ; [[Nexus clan]] (triploid omega-dicot) | ||
: This 2.3.11 clan tempers out the [[nexus comma]] {{monzo| -16 -3 0 0 6 }}. Its 1/3-octave period is ~121/96 and its least-cents generator is ~12/11. A period plus a generator equals ~11/8. Six of these generators equals ~27/16. A period minus a generator equals ~1331/1152 or ~1536/1331. Two of these alternative generators equals ~4/3. Its color name is Tribiloti. | : This 2.3.11 clan tempers out the [[nexus comma]] {{monzo| -16 -3 0 0 6 }}. Its 1/3-octave period is ~121/96 and its least-cents generator is ~12/11. A period plus a generator equals ~11/8. Six of these generators equals ~27/16. A period minus a generator equals ~1331/1152 or ~1536/1331. Two of these alternative generators equals ~4/3. Its color name is Tribiloti. | ||
; Alphaxenic or Laquadloti clan ( | ; Alphaxenic or Laquadloti clan (diploid alpha-tetracot) | ||
: This 2.3.11 clan tempers out the [[Alpharabian comma]] {{monzo| -17 2 0 0 4 }}. Its half-octave period is ~363/256, and its generator is ~33/32. Four generators equals ~9/8. 3/2 is equated to a period plus 2 generators, and 11/8 is equated to a period minus a generator. This clan includes a strong extension to the comic or Saquadyobiti temperament, which is in the jubilismic clan. Its color name is Laquadloti. | : This 2.3.11 clan tempers out the [[Alpharabian comma]] {{monzo| -17 2 0 0 4 }}. Its half-octave period is ~363/256, and its generator is ~33/32. Four generators equals ~9/8. 3/2 is equated to a period plus 2 generators, and 11/8 is equated to a period minus a generator. This clan includes a strong extension to the comic or Saquadyobiti temperament, which is in the jubilismic clan. Its color name is Laquadloti. | ||
Line 263: | Line 263: | ||
Color name: tha. See also [[subgroup temperaments]]. | Color name: tha. See also [[subgroup temperaments]]. | ||
; Thuthuti clan ( | ; Thuthuti clan (dicot) | ||
: This 2.3.13 clan tempers out [[512/507]] ({{monzo| 9 -1 0 0 0 -2 }}). Its generator is ~16/13. Two generators equals ~3/2. 13/8 is equated to 1 octave minus 1 generator. This clan includes as a strong extension the [[dicot]] temperament, which is in the dicot family. | : This 2.3.13 clan tempers out [[512/507]] ({{monzo| 9 -1 0 0 0 -2 }}). Its generator is ~16/13. Two generators equals ~3/2. 13/8 is equated to 1 octave minus 1 generator. This clan includes as a strong extension the [[dicot]] temperament, which is in the dicot family. | ||
; Satrithoti clan ( | ; Satrithoti clan (alpha-tricot) | ||
: This 2.3.13 clan tempers out the threedie, [[2197/2187]] ({{monzo| 0 -7 0 0 0 3 }}). Its generator is ~18/13, and three generators equals ~8/3. 13/8 is equated to 7 generators minus three octaves. This clan is related to the Latriruti clan. | : This 2.3.13 clan tempers out the threedie, [[2197/2187]] ({{monzo| 0 -7 0 0 0 3 }}). Its generator is ~18/13, and three generators equals ~8/3. 13/8 is equated to 7 generators minus three octaves. This clan is related to the Latriruti clan. | ||
Line 706: | Line 706: | ||
; [[Very low accuracy temperaments]] | ; [[Very low accuracy temperaments]] | ||
: | : Exotemperaments which do not fit in elsewhere. | ||
; [[Very high accuracy temperaments]] | ; [[Very high accuracy temperaments]] |