27edo: Difference between revisions

BudjarnLambeth (talk | contribs)
Octave stretch or compression: the 11-limit patent val makes no sense either. Lol. Replace with 2.3.5.7.13-subgroup tunings. Misc. clarifications
Line 1,139: Line 1,139:
; 27edo
; 27edo
* Step size: 44.444{{c}}, octave size: 1200.000{{c}}  
* Step size: 44.444{{c}}, octave size: 1200.000{{c}}  
Pure-octaves 27edo approximates all harmonics up to 16 within 18.3{{c}}.
Pure-octaves 27edo approximates all harmonics up to 16 within 22.8{{c}}, with the greatest error occurring at 15/8 and 16/15, mapped inconsistently to 25\27 and 2\27, respectively.  
{{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 27edo}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}}
{{Harmonics in equal|27|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 27edo (continued)}}
; [[WE|27et, 11-limit WE tuning]]
* Step size: 44.370{{c}}, octave size: 1197.985{{c}}
Compressing the octave of 27edo by around 2{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning}}
{{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning (continued)}}


; [[97ed12]]  
; [[97ed12]]  
* Step size: 44.350{{c}}, octave size: 1197.451{{c}}
* Step size: 44.350{{c}}, octave size: 1197.451{{c}}
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 11-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this.
Compressing the octave of 27edo by around 2.5{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 but 11 within 12.8{{c}}. The tuning 97ed12 does this.
{{Harmonics in equal|97|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 97ed12}}
{{Harmonics in equal|97|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 97ed12}}
{{Harmonics in equal|97|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 97ed12 (continued)}}
{{Harmonics in equal|97|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 97ed12 (continued)}}
; [[WE|27et, 2.3.5.7.13-subgroup WE tuning]]
* Step size: 44.326{{c}}, octave size: 1196.796{{c}}
Compressing the octave of 27edo by around 3.2{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 but 11 within 12.8{{c}}. Both 2.3.5.7.13-subgroup TE and WE tunings do this.
{{Harmonics in cet|44.325787|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning}}
{{Harmonics in cet|44.325787|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 11-limit WE tuning (continued)}}


; [[ZPI|106zpi]] / [[WE|27et, 7-limit WE tuning]] / [[70ed6]]
; [[ZPI|106zpi]] / [[WE|27et, 7-limit WE tuning]] / [[70ed6]]
* Step size (106zpi): 44.302326{{c}}, octave size (106zpi): 1196.163{{c}}
* Step size (70ed6): 44.314, octave size (70ed6): 1196.468{{c}}
* Octave size (70ed6): 1196.468{{c}}
* Step size (7-limit WE): 44.306, octave size (7-limit WE): 1196.273{{c}}
* Octave size (7-limit WE): 1196.273{{c}}
* Step size (106zpi): 44.302{{c}}, octave size (106zpi): 1196.163{{c}}
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6.
Compressing the octave of 27edo by around 3.5 to 3.8{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6.
{{Harmonics in cet|44.302326|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106zpi}}
{{Harmonics in cet|44.302326|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106zpi}}
{{Harmonics in cet|44.302326|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106zpi (continued)}}
{{Harmonics in cet|44.302326|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106zpi (continued)}}
Line 1,165: Line 1,165:
; [[90ed10]]  
; [[90ed10]]  
* Step size: 44.292{{c}}, octave size: 1195.894{{c}}
* Step size: 44.292{{c}}, octave size: 1195.894{{c}}
Compressing the octave of 27edo by around 4.1{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this.
Compressing the octave of 27edo by around 4.1{{c}} results in improved primes 3, 5, 7 and 11, using the 27e val, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this.
{{Harmonics in equal|90|10|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 90ed10}}
{{Harmonics in equal|90|10|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 90ed10}}
{{Harmonics in equal|90|10|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 90ed10 (continued)}}
{{Harmonics in equal|90|10|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 90ed10 (continued)}}