User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 7: Line 7:
= Title2 =
= Title2 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 12edo tunings.
What follows is a comparison of stretched- and compressed-octave 17edo tunings.


; [[WE|12et, 7-limit WE tuning]]  
; [[zpi|56zpi]]  
* Step size: 99.664{{c}}, octave size: 1196.0{{c}}
* Step size: 70.403{{c}}, octave size: NNN{{c}}
Compressing the octave of 12edo by 4{{c}} results in much improved primes 5, 7 and 11, but a much worse prime 3. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. [[40ed10]] does this as well. An argument could be made that such tunings [[7-limit|harmonies involving the 7th harmonic]] to regular old 12edo without even needing to add any new notes to the octave.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 56zpi does this.
{{Harmonics in cet|99.664|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning}}
{{Harmonics in cet|70.403|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi}}
{{Harmonics in cet|99.664|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning (continued)}}
{{Harmonics in cet|70.403|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi (continued)}}


; [[zpi|34zpi]]  
; [[27edt]]  
* Step size: 99.807{{c}}, octave size: 1197.7{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 12edo by around 2{{c}} results in improved primes 5 and 7, but a worse prime 3. The tuning 34zpi does this. It might be a good tuning for 5-limit [[meantone]], for composers seeking more pure thirds and sixths than regular 12edo.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 27edt does this.
{{Harmonics in cet|99.807|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi}}
{{Harmonics in equal|27|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt}}
{{Harmonics in cet|99.807|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi (continued)}}
{{Harmonics in equal|27|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt (continued)}}


; [[WE|12et, 5-limit WE tuning]]  
; [[44ed6]]  
* Step size: 99.868{{c}}, octave size: 1198.4{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 12edo by around 1{{c}} results in slightly improved primes 5 and 7, but a slightly prime 3. Its 5-limit WE tuning and 5-limit [[TE]] tuning both do this. This has the same benefits and drawbacks as 34zpi, but both are less intense here compared to 34zpi.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 44ed6 does this.
{{Harmonics in cet|99.868|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning}}
{{Harmonics in equal|44|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6}}
{{Harmonics in cet|99.868|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning (continued)}}
{{Harmonics in equal|44|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6 (continued)}}


; 12edo
; [[WE|17et, 2.3.7.11 WE tuning]]
* Step size: 100.000{{c}}, octave size: 1200.0{{c}}  
* Step size: 70.392{{c}}, octave size: NNN{{c}}
Pure-octaves 12edo performs well on harmonics 2, 3 and 5 but poorly on harmonics 7, 11 and 13 compared to other edos with a similar number of notes per octave.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.7.11 WE tuning and 2.3.7.11 [[TE]] tuning both do this.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12edo}}
{{Harmonics in cet|70.392|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12edo (continued)}}
{{Harmonics in cet|70.392|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)}}


; [[31ed6]]  
; [[WE|17et, 2.3.7.11.13 WE tuning]]  
* Step size: 100.063{{c}}, octave size: 1200.8{{c}}
* Step size: 70.410{{c}}, octave size: NNN{{c}}
Stretching the octave of 12edo by a little less than 1{{c}} results in an improved prime 3, but worse prime 5. This loosely resembles the stretched-octave tunings commonly used on pianos. The tuning 31ed6 does this.
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.7.11.13 WE tuning and 2.3.7.11.13 [[TE]] tuning both do this.
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}}
{{Harmonics in cet|70.410|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}}
{{Harmonics in cet|70.410|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[19edt]]
; 17edo
* Step size: 101.103{{c}}, octave size: 1201.2{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}  
Stretching the octave of 12edo by a little more than 1{{c}} results in an improved prime 3, but worse prime 5. The tuning 19edt does this.
Pure-octaves 17edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}}
{{Harmonics in equal|17|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo}}
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}}
{{Harmonics in equal|17|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo (continued)}
 
; [[7edf]]
* Step size: 100.3{{c}}, octave size: 1203.35{{c}}
Stretching the octave of 12edo by around 3{{c}} results in improved primes 3 and 13, but much worse primes 5 and 7. This has similar benefits and drawbacks to [[Pythagorean]] tuning. Most modern music probably won't sound very good here because of the off 5th harmonic. The tuning 7edf does this.
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}}
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}}

Revision as of 03:47, 22 August 2025

Title1

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.1 -8.5 -8.2 +4.1 -12.6 +19.5 -12.3 -16.9 +0.0 +34.3 -16.7
Relative (%) -4.1 -8.5 -8.2 +4.1 -12.6 +19.6 -12.4 -17.0 +0.0 +34.4 -16.7
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(31)
34
(34)
36
(36)
38
(38)
40
(0)
42
(2)
43
(3)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.4 +3.4 +6.7 +21.5 +6.7 +40.7 +10.1 +6.7 +24.9 -39.9 +10.1
Relative (%) +3.3 +3.3 +6.7 +21.4 +6.7 +40.6 +10.0 +6.7 +24.8 -39.8 +10.0
Steps
(reduced)
12
(5)
19
(5)
24
(3)
28
(0)
31
(3)
34
(6)
36
(1)
38
(3)
40
(5)
41
(6)
43
(1)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 +34.7 +3.7 +0.0 +17.8 -47.1 +2.5
Relative (%) +1.2 +0.0 +2.5 +16.6 +1.2 +34.6 +3.7 +0.0 +17.8 -47.1 +2.5
Steps
(reduced)
12
(12)
19
(0)
24
(5)
28
(9)
31
(12)
34
(15)
36
(17)
38
(0)
40
(2)
41
(3)
43
(5)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.8 -0.8 +1.5 +15.5 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Relative (%) +0.8 -0.8 +1.5 +15.4 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(0)
34
(3)
36
(5)
38
(7)
40
(9)
41
(10)
43
(12)

Title2

Octave stretch or compression

What follows is a comparison of stretched- and compressed-octave 17edo tunings.

56zpi
  • Step size: 70.403 ¢, octave size: NNN ¢

_ing the octave of 17edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 56zpi does this.

Approximation of harmonics in 56zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.1 -1.1 -6.3 +29.8 -4.2 +10.5 -9.4 -2.1 +26.7 +2.5 -7.4
Relative (%) -4.5 -1.5 -8.9 +42.3 -6.0 +14.9 -13.4 -3.1 +37.9 +3.5 -10.5
Step 17 27 34 40 44 48 51 54 57 59 61
Approximation of harmonics in 56zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -5.1 +7.4 +28.7 -12.6 +23.3 -5.3 -28.5 +23.5 +9.4 -0.7 -7.2 -10.5
Relative (%) -7.3 +10.5 +40.8 -17.9 +33.0 -7.5 -40.5 +33.4 +13.4 -1.0 -10.3 -14.9
Step 63 65 67 68 70 71 72 74 75 76 77 78
27edt
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 17edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 27edt does this.

Approximation of harmonics in 27edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.5 +0.0 -4.9 +31.4 -2.5 +12.4 -7.4 +0.0 +28.9 +4.8 -4.9
Relative (%) -3.5 +0.0 -7.0 +44.6 -3.5 +17.6 -10.5 +0.0 +41.1 +6.8 -7.0
Steps
(reduced)
17
(17)
27
(0)
34
(7)
40
(13)
44
(17)
48
(21)
51
(24)
54
(0)
57
(3)
59
(5)
61
(7)
Approximation of harmonics in 27edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.6 +10.0 +31.4 -9.9 +26.0 -2.5 -25.6 +26.5 +12.4 +2.3 -4.2 -7.4
Relative (%) -3.7 +14.1 +44.6 -14.0 +37.0 -3.5 -36.4 +37.6 +17.6 +3.3 -5.9 -10.5
Steps
(reduced)
63
(9)
65
(11)
67
(13)
68
(14)
70
(16)
71
(17)
72
(18)
74
(20)
75
(21)
76
(22)
77
(23)
78
(24)
44ed6
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 17edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 44ed6 does this.

Approximation of harmonics in 44ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.5 +1.5 -3.0 +33.6 +0.0 +15.1 -4.6 +3.0 +32.1 +8.1 -1.5
Relative (%) -2.2 +2.2 -4.3 +47.7 +0.0 +21.5 -6.5 +4.3 +45.6 +11.5 -2.2
Steps
(reduced)
17
(17)
27
(27)
34
(34)
40
(40)
44
(0)
48
(4)
51
(7)
54
(10)
57
(13)
59
(15)
61
(17)
Approximation of harmonics in 44ed6 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +0.9 +13.6 +35.2 -6.1 +30.0 +1.5 -21.6 +30.6 +16.6 +6.6 +0.1 -3.0
Relative (%) +1.3 +19.3 +49.9 -8.6 +42.5 +2.2 -30.6 +43.4 +23.6 +9.4 +0.2 -4.3
Steps
(reduced)
63
(19)
65
(21)
67
(23)
68
(24)
70
(26)
71
(27)
72
(28)
74
(30)
75
(31)
76
(32)
77
(33)
78
(34)
17et, 2.3.7.11 WE tuning
  • Step size: 70.392 ¢, octave size: NNN ¢

_ing the octave of 17edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 2.3.7.11 WE tuning and 2.3.7.11 TE tuning both do this.

Approximation of harmonics in 17et, 2.3.7.11 WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.3 -1.4 -6.7 +29.4 -4.7 +10.0 -10.0 -2.7 +26.0 +1.8 -8.0
Relative (%) -4.7 -1.9 -9.5 +41.7 -6.7 +14.2 -14.2 -3.9 +37.0 +2.6 -11.4
Step 17 27 34 40 44 48 51 54 57 59 61
Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -5.8 +6.7 +28.0 -13.3 +22.5 -6.1 -29.3 +22.7 +8.6 -1.5 -8.1 -11.4
Relative (%) -8.3 +9.5 +39.8 -19.0 +31.9 -8.6 -41.6 +32.2 +12.2 -2.2 -11.5 -16.2
Step 63 65 67 68 70 71 72 74 75 76 77 78
17et, 2.3.7.11.13 WE tuning
  • Step size: 70.410 ¢, octave size: NNN ¢

_ing the octave of 17edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 2.3.7.11.13 WE tuning and 2.3.7.11.13 TE tuning both do this.

Approximation of harmonics in ETNAME, SUBGROUP WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.0 -0.9 -6.1 +30.1 -3.9 +10.9 -9.1 -1.8 +27.1 +2.9 -6.9
Relative (%) -4.3 -1.3 -8.6 +42.7 -5.6 +15.4 -12.9 -2.5 +38.4 +4.1 -9.9
Step 17 27 34 40 44 48 51 54 57 59 61
Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -4.7 +7.8 +29.2 -12.1 +23.7 -4.8 -28.0 +24.0 +10.0 -0.2 -6.7 -10.0
Relative (%) -6.7 +11.1 +41.5 -17.2 +33.7 -6.8 -39.8 +34.1 +14.2 -0.2 -9.5 -14.2
Step 63 65 67 68 70 71 72 74 75 76 77 78
17edo
  • Step size: NNN ¢, octave size: NNN ¢

Pure-octaves 17edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 17edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 +3.9 +0.0 -33.4 +3.9 +19.4 +0.0 +7.9 -33.4 +13.4 +3.9
Relative (%) +0.0 +5.6 +0.0 -47.3 +5.6 +27.5 +0.0 +11.1 -47.3 +19.0 +5.6
Steps
(reduced)
17
(0)
27
(10)
34
(0)
39
(5)
44
(10)
48
(14)
51
(0)
54
(3)
56
(5)
59
(8)
61
(10)

{{Harmonics in equal|17|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo (continued)}