Linear algebra formalism: Difference between revisions

Fredg999 (talk | contribs)
m MOS:PIPESTYLE
No edit summary
Line 133: Line 133:
== Vals and tuning maps ==
== Vals and tuning maps ==
{{Todo|complete section|inline=1}}
{{Todo|complete section|inline=1}}
== Exterior algebra ==
=== Wedge product ===
The wedge product is the n-dimensional generalization of the cross product. It produces not a vector, but a structure with entries corresponding to combinations of entries in the starting vectors. For two vectors of the same length, [a<sub>1</sub> a<sub>2</sub> a<sub>3</sub> ... a<sub>n</sub>] and [b<sub>1</sub> b<sub>2</sub> b<sub>3</sub> ... b<sub>n</sub>], we go through every pair of indices ''i, j'' up to ''n'' where ''j'' > ''i,'' and the entry c<sub>i,j</sub> of the wedge product is a<sub>i</sub>b<sub>j</sub> - b<sub>i</sub>a<sub>j</sub>. c<sub>j,i</sub> is equal to -(c<sub>i,j</sub>), and c<sub>i,i</sub> where the two indices are the same is 0.
The wedge product is used in regular temperament theory to combine [[vals]] into [[Wedgie|multivals]], hence why multivals are called "wedgies". For example, wedging ⟨5 8 12] and ⟨7 11 16] (the patent vals for 5edo and 7edo) yields ⟨⟨(5*11-8*7) (5*16-12*7) (8*16-12*11)]], which simplifies to ⟨⟨(55-56) (80-84) (128-132)]] and thus to ⟨⟨-1 -4 -4]], which is the wedgie for 5 & 7, a.k.a. meantone.
The wedge product can be generalized to combine ''n'' vals together, where instead of every pair of indices, we have every combination of ''n'' indices. This results in wedgies for rank-3 temperaments and beyond.