Limmic temperaments: Difference between revisions

Community poll result: 7-limit {28/27, 49/48} is the canonical extension of 5-limit {256/243}, hence *septimal blackwood* and no need of a distinct name.
Blackwood: update
Line 9: Line 9:


== Blackwood ==
== Blackwood ==
{{Main| Blackwood }}
Blackwood is the 5edo [[circle of fifths]] with an independent dimension for the harmonic 5. It can be described as the {{nowrap| 5 & 10 }} temperament. [[15edo]] is an obvious tuning.  
Blackwood is the 5edo [[circle of fifths]] with an independent dimension for the harmonic 5. It can be described as the {{nowrap| 5 & 10 }} temperament. [[15edo]] is an obvious tuning.  


Line 21: Line 23:
: mapping generators: ~9/8, ~5
: mapping generators: ~9/8, ~5


[[Optimal tuning]] ([[POTE]]): ~9/8 = 240.000, ~5/4 = 399.594
[[Optimal tuning]]s:
* [[CTE]]: ~9/8 = 240.000, ~5/4 = 386.314
: [[error map]]: {{val| 0.000 +18.045 0.000 }}
* [[POTE]]: ~9/8 = 240.000, ~5/4 = 399.594
: error map: {{val| 0.000 +18.045 +13.280 }}


{{Optimal ET sequence|legend=1| 5, 10, 15 }}
{{Optimal ET sequence|legend=1| 5, 10, 15 }}


[[Badness]] (Smith): 0.063760
[[Badness]] (Smith): 0.063760
[[File:BlackwoodMajor 15edo.mp3]] [[:File:BlackwoodMajor 15edo.mp3|BlackwoodMajor 15edo.mp3]]
Blackwood major scale in 15edo


=== 7-limit (blacksmith) ===
=== 7-limit (blacksmith) ===
[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of septimal blackwood]]
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 42: Line 42:
{{Multival|legend=1| 0 5 0 8 0 -14 }}
{{Multival|legend=1| 0 5 0 8 0 -14 }}


[[Optimal tuning]] ([[POTE]]): ~8/7 = 240.000, ~5/4 = 392.767
[[Optimal tuning]]s:
* [[CTE]]: ~8/7 = 240.000, ~5/4 = 386.313
: [[error map]]: {{val| 0.000 +18.045 0.000 -8.826 }}
* [[POTE]]: ~8/7 = 240.000, ~5/4 = 392.767
: error map: {{val| 0.000 +18.045 +6.454 -8.826 }}


{{Optimal ET sequence|legend=1| 5, 10, 15, 40b, 55b }}
{{Optimal ET sequence|legend=1| 5, 10, 15, 40b }}


[[Badness]] (Smith): 0.025640
[[Badness]] (Smith): 0.025640