97edo: Difference between revisions
Lumatone mapping for 97edo now available; harmonics table extended to include up to 29 to match the unnamed high-limit temperament corresponding to this mapping |
m Remove link to deleted page |
||
Line 14: | Line 14: | ||
== Approximation to JI == | == Approximation to JI == | ||
97edo has very poor direct approximation for [[superparticular]] intervals among edos up to 200, and the worst for intervals up to 9/8 among edos up to 100. It has errors of well above one standard deviation (about 15.87%) in superparticular intervals with denominators up to 14. The first good approximation is the 16/15 semitone using the 9th note, with an error of 3% | 97edo has very poor direct approximation for [[superparticular]] intervals among edos up to 200, and the worst for intervals up to 9/8 among edos up to 100. It has errors of well above one standard deviation (about 15.87%) in superparticular intervals with denominators up to 14. The first good approximation is the 16/15 semitone using the 9th note, with an error of 3%. | ||
Since 97edo is a prime edo, it lacks specific modulation circles, symmetrical chords or sub-edos that are present in composite edos. When notable equal divisions like {{EDOs|19, 31, 41, or 53}} have strong JI-based harmony, 97edo does not have easily representable modulation because of its inability to represent superparticulars. However, this might result in interest in this tuning through JI-agnostic approaches. | Since 97edo is a prime edo, it lacks specific modulation circles, symmetrical chords or sub-edos that are present in composite edos. When notable equal divisions like {{EDOs|19, 31, 41, or 53}} have strong JI-based harmony, 97edo does not have easily representable modulation because of its inability to represent superparticulars. However, this might result in interest in this tuning through JI-agnostic approaches. |