61edo: Difference between revisions
No need to remind readers of what a regular temperament is everywhere Tag: Undo |
+intro to the tuning profile, as a compensation for the removal of the poem |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
As an equal temperament, 61et is characterized by [[tempering out]] 20000/19683 ([[tetracot comma]]) and 262144/253125 ([[passion comma]]) in the 5-limit. In the 7-limit, the [[patent val]] {{val| 61 97 142 '''171''' }} [[support]]s [[valentine]] ({{nowrap|15 & | 61edo is only [[consistent]] to the [[5-odd-limit]]. Its [[3/1|3rd]] and [[5/1|5th]] [[harmonic]]s are sharp of just by more than 6 cents, and the [[7/1|7th]] and [[11/1|11th]], though they err by less, are on the flat side. This limits its harmonic inventory. However, it does possess reasonably good approximations of [[21/16]] and [[23/16]], only a bit more than one cent off in each case. | ||
As an equal temperament, 61et is characterized by [[tempering out]] 20000/19683 ([[tetracot comma]]) and 262144/253125 ([[passion comma]]) in the 5-limit. In the 7-limit, the [[patent val]] {{val| 61 97 142 '''171''' }} [[support]]s [[valentine]] ({{nowrap| 15 & 46 }}), and is the [[optimal patent val]] for [[freivald]] ({{nowrap| 24 & 37 }}) in the 7-, 11- and 13-limit. The 61d [[val]] {{val| 61 97 142 '''172''' }} is a great tuning for [[modus]] and [[quasisuper]], and is a simple but out-of-tune edo tuning for [[parakleismic]]. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|61}} | |||
=== Subsets and supersets === | === Subsets and supersets === |