AFDO: Difference between revisions
→Using AFDOs to make EDO interval tables: Deleted the section I made because upon further testing it doesn’t work the way it’s supposed to |
Note the potential difference from overtone scales |
||
Line 3: | Line 3: | ||
For example, in [[12afdo]] the first degree is [[13/12]], the second is 14/12 ([[7/6]]), and so on. For an AFDO system, the ''difference'' between interval ratios is equal (they form an arithmetic progression), rather than their ''ratios'' between interval ratios being equal as in [[EDO]] systems (a geometric progression). All AFDOs are subsets of [[just intonation]], and up to transposition, any AFDO is a superset of a smaller AFDO and a subset of a larger AFDO (i.e. ''n''-afdo is a superset of (''n'' - 1)-afdo and a subset of (''n'' + 1)-afdo for any integer ''n'' > 1). | For example, in [[12afdo]] the first degree is [[13/12]], the second is 14/12 ([[7/6]]), and so on. For an AFDO system, the ''difference'' between interval ratios is equal (they form an arithmetic progression), rather than their ''ratios'' between interval ratios being equal as in [[EDO]] systems (a geometric progression). All AFDOs are subsets of [[just intonation]], and up to transposition, any AFDO is a superset of a smaller AFDO and a subset of a larger AFDO (i.e. ''n''-afdo is a superset of (''n'' - 1)-afdo and a subset of (''n'' + 1)-afdo for any integer ''n'' > 1). | ||
When treated as a scale, the AFDO is equivalent to the [[overtone scale]]. An AFDO is equivalent to an ODO ([[otonal division]] of the octave). It may also be called an EFDO ([[equal frequency division]] of the octave), however, this more general acronym is typically reserved for divisions of irrational intervals (unlike the octave) which are therefore not subsets of just intonation. | When treated as a scale, the AFDO is equivalent to the [[overtone scale]]. However, an overtone scale often has an assumption of a tonic whereas an AFDO simply describes all the theoretically available pitch relations. Therefore, a passage built on 12::22 could be said to be in Mode 12, but is technically covered by 11afdo. | ||
An AFDO is equivalent to an ODO ([[otonal division]] of the octave). It may also be called an EFDO ([[equal frequency division]] of the octave), however, this more general acronym is typically reserved for divisions of irrational intervals (unlike the octave) which are therefore not subsets of just intonation. | |||
== Formula == | == Formula == |