Template:LaTeX mapping operators/doc: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 5: Line 5:
|+ style="font-size: 105%; white-space: nowrap;" | Pre-defined LaTeX control sequences for interval vectors
|+ style="font-size: 105%; white-space: nowrap;" | Pre-defined LaTeX control sequences for interval vectors
|-
|-
! rowspan="2" | Operator !! colspan="2" | Example
! rowspan="2" | Operator !! colspan="2" | Example !! rowspan="2" | Definition
|-
|-
! You type !! You get
! You type !! You get
|-
|-
| <code>monzo</code> || <code>{{nowrap|\monzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\monzo{-4 & 4 & -1}</math>
| <code>monzo</code> || <code>{{nowrap|\monzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\monzo{-4 & 4 & -1}</math> || [[Monzo]]
|-
|-
| <code>tmonzo</code> || <code>{{nowrap|\tmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tmonzo{-4 & 4 & -1}</math>
| <code>tmonzo</code> || <code>{{nowrap|\tmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tmonzo{-4 & 4 & -1}</math> || [[Tmonzos and tvals|Tempered monzo]]
|-
|-
| <code>bimonzo</code> || <code>{{nowrap|\bimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bimonzo{-4 & 4 & -1}</math>
| <code>bimonzo</code> || <code>{{nowrap|\bimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bimonzo{-4 & 4 & -1}</math> || Bimonzo
|-
|-
| <code>bitmonzo</code> || <code>{{nowrap|\bitmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bitmonzo{-4 & 4 & -1}</math>
| <code>bitmonzo</code> || <code>{{nowrap|\bitmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bitmonzo{-4 & 4 & -1}</math> || Tempered bimonzo
|-
|-
| <code>trimonzo</code> || <code>{{nowrap|\trimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\trimonzo{-4 & 4 & -1}</math>
| <code>trimonzo</code> || <code>{{nowrap|\trimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\trimonzo{-4 & 4 & -1}</math> || Trimonzo
|-
|-
| <code>tritmonzo</code> || <code>{{nowrap|\tritmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tritmonzo{-4 & 4 & -1}</math>
| <code>tritmonzo</code> || <code>{{nowrap|\tritmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tritmonzo{-4 & 4 & -1}</math> || Tempered trimonzo
|-
|-
| <code>quadmonzo</code> || <code>{{nowrap|\quadmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadmonzo{-4 & 4 & -1}</math>
| <code>quadmonzo</code> || <code>{{nowrap|\quadmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadmonzo{-4 & 4 & -1}</math> || Quadmonzo
|-
|-
| <code>quadtmonzo</code> || <code>{{nowrap|\quadtmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadtmonzo{-4 & 4 & -1}</math>
| <code>quadtmonzo</code> || <code>{{nowrap|\quadtmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadtmonzo{-4 & 4 & -1}</math> || Tempered quadmonzo
|-
|-
| <code>val</code> || <code>{{nowrap|\val{{(}}12 & 19 & 28{{)}}}}</code> || <math>\val{12 & 19 & 28}</math>
| <code>val</code> || <code>{{nowrap|\val{{(}}12 & 19 & 28{{)}}}}</code> || <math>\val{12 & 19 & 28}</math> || [[Val]]
|-
|-
| <code>tval</code> || <code>{{nowrap|\tval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tval{12 & 19 & 28}</math>
| <code>tval</code> || <code>{{nowrap|\tval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tval{12 & 19 & 28}</math> || [[Tmonzos and tvals|Tempered val]]
|-
|-
| <code>bival</code> || <code>{{nowrap|\bival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bival{12 & 19 & 28}</math>
| <code>bival</code> || <code>{{nowrap|\bival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bival{12 & 19 & 28}</math> || Bival
|-
|-
| <code>bitval</code> || <code>{{nowrap|\bitval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bitval{12 & 19 & 28}</math>
| <code>bitval</code> || <code>{{nowrap|\bitval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bitval{12 & 19 & 28}</math> || Tempered bival
|-
|-
| <code>trival</code> || <code>{{nowrap|\trival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\trival{12 & 19 & 28}</math>
| <code>trival</code> || <code>{{nowrap|\trival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\trival{12 & 19 & 28}</math> || Trival
|-
|-
| <code>tritval</code> || <code>{{nowrap|\tritval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tritval{12 & 19 & 28}</math>
| <code>tritval</code> || <code>{{nowrap|\tritval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tritval{12 & 19 & 28}</math> || Tempered trival
|-
|-
| <code>quadval</code> || <code>{{nowrap|\quadval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadval{12 & 19 & 28}</math>
| <code>quadval</code> || <code>{{nowrap|\quadval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadval{12 & 19 & 28}</math> || Quadval
|-
|-
| <code>quadtval</code> || <code>{{nowrap|\quadtval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadtval{12 & 19 & 28}</math>
| <code>quadtval</code> || <code>{{nowrap|\quadtval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadtval{12 & 19 & 28}</math> || Tempered quadval
|-
|-
| <code>rket</code> || <code>{{nowrap|\rket{{(}}\val{{(}}1 & 2 & 3{{)}} \val{{(}}0 & -3 & -5{{)}}{{)}}}}</code> || <math>\rket{\val{1 & 2 & 3}\val{0 & -3 & -5}}</math>
| <code>rket</code> || <code>{{nowrap|\rket{{(}}\val{{(}}1 & 2 & 3{{)}} \val{{(}}0 & -3 & -5{{)}}{{)}}}}</code> || <math>\rket{\val{1 & 2 & 3}\val{0 & -3 & -5}}</math> || [[Dave Keenan]] and [[Douglas Blumeyer]]'s<br />[[Extended_bra-ket_notation#Variant_including_curly_and_square_brackets|variation]] on [[extended bra-ket notation]]
|-
|-
| <code>vmp</code> || <code>{{nowrap|\vmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| <code>vmp</code> || <code>{{nowrap|\vmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math> || Dot product of Monzo and val
|-
|-
| <code>wmp</code> || <code>{{nowrap|\wmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| <code>wmp</code> || <code>{{nowrap|\wmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math> || Dot product of bimonzo and [[wedgies and multivals|wedgie]]
|-
|-
| <code>hs</code> || <code>\hs</code> || Narrow whitespace
| <code>hs</code> || <code>\hs</code> || || Narrow whitespace
|}
|}



Revision as of 13:50, 30 September 2024

[math]\displaystyle{ \def\hs{\hspace{-3px}} \def\lvsp{{}\mkern-5.5mu}{} \def\rvsp{{}\mkern-2.5mu}{} \def\llangle{\left\langle\lvsp\left\langle} \def\lllangle{\left\langle\lvsp\left\langle\lvsp\left\langle} \def\llllangle{\left\langle\lvsp\left\langle\lvsp\left\langle\lvsp\left\langle} \def\llbrack{\left[\left[} \def\lllbrack{\left[\left[\left[} \def\llllbrack{\left[\left[\left[\left[} \def\llvert{\left\vert\left\vert} \def\lllvert{\left\vert\left\vert\left\vert} \def\llllvert{\left\vert\left\vert\left\vert\left\vert} \def\rrangle{\right\rangle\rvsp\right\rangle} \def\rrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle} \def\rrrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle\rvsp\right\rangle} \def\rrbrack{\right]\right]} \def\rrrbrack{\right]\right]\right]} \def\rrrrbrack{\right]\right]\right]\right]} \def\rrvert{\right\vert\right\vert} \def\rrrvert{\right\vert\right\vert\right\vert} \def\rrrrvert{\right\vert\right\vert\right\vert\right\vert} }[/math][math]\displaystyle{ \def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]} \def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert} \def\bival#1{\llangle\begin{matrix}#1\end{matrix}\rrbrack} \def\bitval#1{\llangle\begin{matrix}#1\end{matrix}\rrvert} \def\trival#1{\lllangle\begin{matrix}#1\end{matrix}\rrrbrack} \def\tritval#1{\lllangle\begin{matrix}#1\end{matrix}\rrrvert} \def\quadval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrbrack} \def\quadtval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrvert} \def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle} \def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle} \def\bimonzo#1{\llbrack\begin{matrix}#1\end{matrix}\rrangle} \def\bitmonzo#1{\llvert\begin{matrix}#1\end{matrix}\rrangle} \def\trimonzo#1{\lllbrack\begin{matrix}#1\end{matrix}\rrrangle} \def\tritmonzo#1{\lllvert\begin{matrix}#1\end{matrix}\rrrangle} \def\quadmonzo#1{\llllbrack\begin{matrix}#1\end{matrix}\rrrrangle} \def\quadtmonzo#1{\llllvert\begin{matrix}#1\end{matrix}\rrrrangle} \def\rbra#1{\left\{\begin{matrix}#1\end{matrix}\right]} \def\rket#1{\left[\begin{matrix}#1\end{matrix}\right\}} \def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle} \def\wmp#1#2{\llangle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\rrangle} }[/math]

Usage

This template is mainly used to typeset Monzos and vals, but multimonzos and multivals are also supported up to four dimensions.

Pre-defined LaTeX control sequences for interval vectors
Operator Example Definition
You type You get
monzo \monzo{-4 & 4 & -1} [math]\displaystyle{ \monzo{-4 & 4 & -1} }[/math] Monzo
tmonzo \tmonzo{-4 & 4 & -1} [math]\displaystyle{ \tmonzo{-4 & 4 & -1} }[/math] Tempered monzo
bimonzo \bimonzo{-4 & 4 & -1} [math]\displaystyle{ \bimonzo{-4 & 4 & -1} }[/math] Bimonzo
bitmonzo \bitmonzo{-4 & 4 & -1} [math]\displaystyle{ \bitmonzo{-4 & 4 & -1} }[/math] Tempered bimonzo
trimonzo \trimonzo{-4 & 4 & -1} [math]\displaystyle{ \trimonzo{-4 & 4 & -1} }[/math] Trimonzo
tritmonzo \tritmonzo{-4 & 4 & -1} [math]\displaystyle{ \tritmonzo{-4 & 4 & -1} }[/math] Tempered trimonzo
quadmonzo \quadmonzo{-4 & 4 & -1} [math]\displaystyle{ \quadmonzo{-4 & 4 & -1} }[/math] Quadmonzo
quadtmonzo \quadtmonzo{-4 & 4 & -1} [math]\displaystyle{ \quadtmonzo{-4 & 4 & -1} }[/math] Tempered quadmonzo
val \val{12 & 19 & 28} [math]\displaystyle{ \val{12 & 19 & 28} }[/math] Val
tval \tval{12 & 19 & 28} [math]\displaystyle{ \tval{12 & 19 & 28} }[/math] Tempered val
bival \bival{12 & 19 & 28} [math]\displaystyle{ \bival{12 & 19 & 28} }[/math] Bival
bitval \bitval{12 & 19 & 28} [math]\displaystyle{ \bitval{12 & 19 & 28} }[/math] Tempered bival
trival \trival{12 & 19 & 28} [math]\displaystyle{ \trival{12 & 19 & 28} }[/math] Trival
tritval \tritval{12 & 19 & 28} [math]\displaystyle{ \tritval{12 & 19 & 28} }[/math] Tempered trival
quadval \quadval{12 & 19 & 28} [math]\displaystyle{ \quadval{12 & 19 & 28} }[/math] Quadval
quadtval \quadtval{12 & 19 & 28} [math]\displaystyle{ \quadtval{12 & 19 & 28} }[/math] Tempered quadval
rket \rket{\val{1 & 2 & 3} \val{0 & -3 & -5}} [math]\displaystyle{ \rket{\val{1 & 2 & 3}\val{0 & -3 & -5}} }[/math] Dave Keenan and Douglas Blumeyer's
variation on extended bra-ket notation
vmp \vmp{12 & 19 & 28}{-4 & 4 & -1} [math]\displaystyle{ \vmp{12 & 19 & 28}{-4 & 4 & -1} }[/math] Dot product of Monzo and val
wmp \wmp{12 & 19 & 28}{-4 & 4 & -1} [math]\displaystyle{ \wmp{12 & 19 & 28}{-4 & 4 & -1} }[/math] Dot product of bimonzo and wedgie
hs \hs Narrow whitespace

Tip: Adding spaces improves readability of the markup.

See also