Cuthbert chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 266575852 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 283424630 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-10-19 17:58:06 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-07 15:40:23 UTC</tt>.<br>
: The original revision id was <tt>266575852</tt>.<br>
: The original revision id was <tt>283424630</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The **cuthbert triad** is an [[dyadic chord|essentially tempered dyadic triad]] which consists of two [[13_11|13/11]] thirds making up a (sort of) [[7_5|7/5]], which implies tempering by [[cuthbert]], the [[847_845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6_5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5_3|5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The **cuthbert triad** is an [[dyadic chord|essentially tempered dyadic triad]] which consists of two [[13_11|13/11]] thirds making up a [[7_5|7/5]], which implies tempering by [[cuthbert]], the [[847_845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6_5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5_3|5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;cuthbert triad&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;cuthbert triad&lt;/strong&gt; is an &lt;a class="wiki_link" href="/dyadic%20chord"&gt;essentially tempered dyadic triad&lt;/a&gt; which consists of two &lt;a class="wiki_link" href="/13_11"&gt;13/11&lt;/a&gt; thirds making up a (sort of) &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;, which implies tempering by &lt;a class="wiki_link" href="/cuthbert"&gt;cuthbert&lt;/a&gt;, the &lt;a class="wiki_link" href="/847_845"&gt;847/845&lt;/a&gt; comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the &lt;a class="wiki_link" href="/garibert%20tetrad"&gt;garibert tetrad&lt;/a&gt;, which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;, leading to a garibert tempering of 1-13/11-7/5-&lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;. Equal temperaments with cuthbert triads include &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt;, &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt;, &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58edo&lt;/a&gt;, &lt;a class="wiki_link" href="/70edo"&gt;70edo&lt;/a&gt;, &lt;a class="wiki_link" href="/87edo"&gt;87edo&lt;/a&gt;, &lt;a class="wiki_link" href="/94edo"&gt;94edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt;, &lt;a class="wiki_link" href="/103edo"&gt;103edo&lt;/a&gt;, &lt;a class="wiki_link" href="/111edo"&gt;111edo&lt;/a&gt;, &lt;a class="wiki_link" href="/128edo"&gt;128edo&lt;/a&gt;, &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt;, &lt;a class="wiki_link" href="/149edo"&gt;149edo&lt;/a&gt;, &lt;a class="wiki_link" href="/177edo"&gt;177edo&lt;/a&gt;, &lt;a class="wiki_link" href="/190edo"&gt;190edo&lt;/a&gt;, 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Schismatic%20family#Garibaldi"&gt;garibaldi temperament&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;cuthbert triad&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;cuthbert triad&lt;/strong&gt; is an &lt;a class="wiki_link" href="/dyadic%20chord"&gt;essentially tempered dyadic triad&lt;/a&gt; which consists of two &lt;a class="wiki_link" href="/13_11"&gt;13/11&lt;/a&gt; thirds making up a &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;, which implies tempering by &lt;a class="wiki_link" href="/cuthbert"&gt;cuthbert&lt;/a&gt;, the &lt;a class="wiki_link" href="/847_845"&gt;847/845&lt;/a&gt; comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the &lt;a class="wiki_link" href="/garibert%20tetrad"&gt;garibert tetrad&lt;/a&gt;, which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;, leading to a garibert tempering of 1-13/11-7/5-&lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;. Equal temperaments with cuthbert triads include &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt;, &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt;, &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58edo&lt;/a&gt;, &lt;a class="wiki_link" href="/70edo"&gt;70edo&lt;/a&gt;, &lt;a class="wiki_link" href="/87edo"&gt;87edo&lt;/a&gt;, &lt;a class="wiki_link" href="/94edo"&gt;94edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt;, &lt;a class="wiki_link" href="/103edo"&gt;103edo&lt;/a&gt;, &lt;a class="wiki_link" href="/111edo"&gt;111edo&lt;/a&gt;, &lt;a class="wiki_link" href="/128edo"&gt;128edo&lt;/a&gt;, &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt;, &lt;a class="wiki_link" href="/149edo"&gt;149edo&lt;/a&gt;, &lt;a class="wiki_link" href="/177edo"&gt;177edo&lt;/a&gt;, &lt;a class="wiki_link" href="/190edo"&gt;190edo&lt;/a&gt;, 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Schismatic%20family#Garibaldi"&gt;garibaldi temperament&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 15:40, 7 December 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-12-07 15:40:23 UTC.
The original revision id was 283424630.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The **cuthbert triad** is an [[dyadic chord|essentially tempered dyadic triad]] which consists of two [[13_11|13/11]] thirds making up a [[7_5|7/5]], which implies tempering by [[cuthbert]], the [[847_845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6_5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5_3|5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].

Original HTML content:

<html><head><title>cuthbert triad</title></head><body>The <strong>cuthbert triad</strong> is an <a class="wiki_link" href="/dyadic%20chord">essentially tempered dyadic triad</a> which consists of two <a class="wiki_link" href="/13_11">13/11</a> thirds making up a <a class="wiki_link" href="/7_5">7/5</a>, which implies tempering by <a class="wiki_link" href="/cuthbert">cuthbert</a>, the <a class="wiki_link" href="/847_845">847/845</a> comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the <a class="wiki_link" href="/garibert%20tetrad">garibert tetrad</a>, which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-<a class="wiki_link" href="/6_5">6/5</a>, leading to a garibert tempering of 1-13/11-7/5-<a class="wiki_link" href="/5_3">5/3</a>. Equal temperaments with cuthbert triads include <a class="wiki_link" href="/29edo">29edo</a>, <a class="wiki_link" href="/33edo">33edo</a>, <a class="wiki_link" href="/37edo">37edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/50edo">50edo</a>, <a class="wiki_link" href="/53edo">53edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/70edo">70edo</a>, <a class="wiki_link" href="/87edo">87edo</a>, <a class="wiki_link" href="/94edo">94edo</a>, <a class="wiki_link" href="/99edo">99edo</a>, <a class="wiki_link" href="/103edo">103edo</a>, <a class="wiki_link" href="/111edo">111edo</a>, <a class="wiki_link" href="/128edo">128edo</a>, <a class="wiki_link" href="/140edo">140edo</a>, <a class="wiki_link" href="/149edo">149edo</a>, <a class="wiki_link" href="/177edo">177edo</a>, <a class="wiki_link" href="/190edo">190edo</a>, 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of <a class="wiki_link" href="/13-limit">13-limit</a> <a class="wiki_link" href="/Schismatic%20family#Garibaldi">garibaldi temperament</a>.</body></html>