Constant structure: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>spt3125 **Imported revision 511009828 - Original comment: ** |
Wikispaces>spt3125 **Imported revision 511013618 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-05-24 | : This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-05-24 16:30:03 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>511013618</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[scale]] is said to have //constant structure// if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[scale]] is said to have //constant structure// (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | ||
The term "constant structure" seems to have been first used by [[Erv Wilson]]. | |||
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). | |||
=Examples= | =Examples= | ||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | ||
Here is the | Here is the interval matrix of this scale: | ||
|| | || || **1** || **2** || **3** || **4** || **5** || **(6)** || | ||
|| | || **1/1** || 1/1 || 9/8 || 5/4 || 3/2 || 5/3 || 2/1 || | ||
|| | || **9/8** || 1/1 || 10/9 || 4/3 || 40/27 || 16/9 || 2/1 || | ||
|| | || **5/4** || 1/1 || 6/5 || 4/3 || 8/5 || 9/5 || 2/1 || | ||
|| | || **3/2** || 1/1 || 10/9 || 4/3 || 3/2 || 5/3 || 2/1 || | ||
|| | || **5/3** || 1/1 || 6/5 || 27/20 || 3/2 || 9/5 || 2/1 || | ||
Note that every interval always appears in the same position (column). For example, 3/2 is always the "fourth" of this scale. | Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth". | ||
This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 | This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 | ||
Its interval matrix: | Its interval matrix: | ||
|| | || || **1** || **2** || **3** || **4** || **5** || **(6)** || | ||
|| | || **1/1** || 1/1 || 25/24 || <span style="background-color: #ffcc44;">6/5</span> || 3/2 || <span style="background-color: #ffcc44;">5/3</span> || 2/1 || | ||
|| | || **25/24** || 1/1 || 144/125 || 36/25 || <span style="background-color: #ffcc44;">8/5</span> || 48/25 || 2/1 || | ||
|| | || **6/5** || 1/1 || <span style="background-color: #ffcc44;">5/4</span> || 25/18 || <span style="background-color: #ffcc44;">5/3</span> || 125/72 || 2/1 || | ||
|| | || **3/2** || 1/1 || 10/9 || 4/3 || 25/18 || <span style="background-color: #ffcc44;">8/5</span> || 2/1 || | ||
|| | || **5/3** || 1/1 || <span style="background-color: #ffcc44;">6/5</span> || <span style="background-color: #ffcc44;">5/4</span> || 36/25 || 9/5 || 2/1 || | ||
Note that 5/4 | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure. | ||
Another example of a familiar scale that is not CS is the 7-note diatonic scale in [[12edo]]. | |||
Interval matrix as steps of 12edo: | |||
|| || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** || | |||
|| 0 || 0 || 2 || 4 || 5 || 7 || 9 || 11 || 12 || | |||
|| **2** || 0 || 2 || 3 || 5 || 7 || 9 || 11 || 12 || | |||
|| **4** || 0 || 1 || 3 || 5 || 7 || 8 || 10 || 12 || | |||
|| **7** || 0 || 2 || 4 || <span style="background-color: #ffcc44;">6</span> || 7 || 9 || 11 || 12 || | |||
|| **9** || 0 || 2 || 4 || 5 || 7 || 9 || 10 || 12 || | |||
|| **11** || 0 || 2 || 3 || 5 || 7 || 8 || 10 || 12 || | |||
|| **12** || 0 || 1 || 3 || 5 || <span style="background-color: #ffcc44;">6</span> || 8 || 10 || 12 || | |||
Interval matrix as note names: | |||
|| || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** || | |||
|| **C** || C || D || E || F || G || A || B || C || | |||
|| **D** || C || D || Eb || F || G || A || B || C || | |||
|| **E** || C || Db || Eb || F || G || Ab || B || C || | |||
|| **F** || C || D || E || <span style="background-color: #ffcc44;">F#</span> || G || A || B || C || | |||
|| **G** || C || D || E || F || G || A || Bb || C || | |||
|| **A** || C || D || Eb || F || G || Ab || Bb || C || | |||
|| **B** || C || Db || Eb || F || <span style="background-color: #ffcc44;">Gb</span> || Ab || Bb || C || | |||
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, could have constant structure!) | |||
=See also= | |||
[[Scale properties simplified]] | |||
[[epimorphic]] | |||
[[http://tonalsoft.com/enc/c/constant-structure.aspx|Constant structure]] (Tonalsoft Encyclopedia) | |||
[[http://anaphoria.com/wilsonintroMOS.html#cs|Introduction to Erv Wilson's Moments of Symmetry]] | |||
[[media type="custom" key="26024358"]]</pre></div> | [[media type="custom" key="26024358"]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>constant structure</title></head><body>A <a class="wiki_link" href="/scale">scale</a> is said to have <em>constant structure</em> if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>constant structure</title></head><body>A <a class="wiki_link" href="/scale">scale</a> is said to have <em>constant structure</em> (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.<br /> | ||
<br /> | |||
The term &quot;constant structure&quot; seems to have been first used by <a class="wiki_link" href="/Erv%20Wilson">Erv Wilson</a>.<br /> | |||
<br /> | |||
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an <a class="wiki_link" href="/interval%20matrix">interval matrix</a> (<a class="wiki_link" href="/Scala">Scala</a> can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:1 -->Examples</h1> | <!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:1 -->Examples</h1> | ||
<br /> | <br /> | ||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1<br /> | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1<br /> | ||
Here is the | Here is the interval matrix of this scale:<br /> | ||
<table class="wiki_table"> | <table class="wiki_table"> | ||
<tr> | <tr> | ||
< | <td><br /> | ||
</ | </td> | ||
< | <td><strong>1</strong><br /> | ||
</ | </td> | ||
< | <td><strong>2</strong><br /> | ||
</ | </td> | ||
< | <td><strong>3</strong><br /> | ||
</ | </td> | ||
< | <td><strong>4</strong><br /> | ||
</ | </td> | ||
< | <td><strong>5</strong><br /> | ||
</ | </td> | ||
< | <td><strong>(6)</strong><br /> | ||
</ | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>1/1</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 75: | Line 113: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>9/8</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 91: | Line 129: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>5/4</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 107: | Line 145: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>3/2</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 123: | Line 161: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>5/3</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 140: | Line 178: | ||
</table> | </table> | ||
Note that every interval always appears in the same position (column). For example, 3/2 is always the &quot;fourth&quot; of this scale.<br /> | Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the &quot;fourth&quot; of this scale - never the &quot;third&quot; or &quot;fifth&quot;.<br /> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 149: | Line 187: | ||
<table class="wiki_table"> | <table class="wiki_table"> | ||
<tr> | <tr> | ||
< | <td><br /> | ||
</ | </td> | ||
< | <td><strong>1</strong><br /> | ||
</ | </td> | ||
< | <td><strong>2</strong><br /> | ||
</ | </td> | ||
< | <td><strong>3</strong><br /> | ||
</ | </td> | ||
< | <td><strong>4</strong><br /> | ||
</ | </td> | ||
< | <td><strong>5</strong><br /> | ||
</ | </td> | ||
< | <td><strong>(6)</strong><br /> | ||
</ | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>1/1</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
<td>25/24<br /> | <td>25/24<br /> | ||
</td> | </td> | ||
<td>6/5<br /> | <td><span style="background-color: #ffcc44;">6/5</span><br /> | ||
</td> | </td> | ||
<td>3/2<br /> | <td>3/2<br /> | ||
</td> | </td> | ||
<td>5/3<br /> | <td><span style="background-color: #ffcc44;">5/3</span><br /> | ||
</td> | </td> | ||
<td>2/1<br /> | <td>2/1<br /> | ||
Line 181: | Line 219: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>25/24</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 189: | Line 227: | ||
<td>36/25<br /> | <td>36/25<br /> | ||
</td> | </td> | ||
<td>8/5<br /> | <td><span style="background-color: #ffcc44;">8/5</span><br /> | ||
</td> | </td> | ||
<td>48/25<br /> | <td>48/25<br /> | ||
Line 197: | Line 235: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>6/5</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
<td>5/4<br /> | <td><span style="background-color: #ffcc44;">5/4</span><br /> | ||
</td> | </td> | ||
<td>25/18<br /> | <td>25/18<br /> | ||
</td> | </td> | ||
<td>5/3<br /> | <td><span style="background-color: #ffcc44;">5/3</span><br /> | ||
</td> | </td> | ||
<td>125/72<br /> | <td>125/72<br /> | ||
Line 213: | Line 251: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>3/2</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
Line 223: | Line 261: | ||
<td>25/18<br /> | <td>25/18<br /> | ||
</td> | </td> | ||
<td>8/5<br /> | <td><span style="background-color: #ffcc44;">8/5</span><br /> | ||
</td> | </td> | ||
<td>2/1<br /> | <td>2/1<br /> | ||
Line 229: | Line 267: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td><strong>5/3</strong><br /> | ||
</ | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
<td>6/5<br /> | <td><span style="background-color: #ffcc44;">6/5</span><br /> | ||
</td> | </td> | ||
<td>5/4<br /> | <td><span style="background-color: #ffcc44;">5/4</span><br /> | ||
</td> | </td> | ||
<td>36/25<br /> | <td>36/25<br /> | ||
Line 246: | Line 284: | ||
</table> | </table> | ||
Note that 5/4 | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the &quot;second&quot; and &quot;third&quot; steps of the scale. Thus, this scale does not have constant structure.<br /> | ||
<br /> | |||
<br /> | |||
Another example of a familiar scale that is not CS is the 7-note diatonic scale in <a class="wiki_link" href="/12edo">12edo</a>.<br /> | |||
Interval matrix as steps of 12edo:<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<td><br /> | |||
</td> | |||
<td><strong>1</strong><br /> | |||
</td> | |||
<td><strong>2</strong><br /> | |||
</td> | |||
<td><strong>3</strong><br /> | |||
</td> | |||
<td><strong>4</strong><br /> | |||
</td> | |||
<td><strong>5</strong><br /> | |||
</td> | |||
<td><strong>6</strong><br /> | |||
</td> | |||
<td><strong>7</strong><br /> | |||
</td> | |||
<td><strong>(8)</strong><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>2<br /> | |||
</td> | |||
<td>4<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>9<br /> | |||
</td> | |||
<td>11<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>2</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>2<br /> | |||
</td> | |||
<td>3<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>9<br /> | |||
</td> | |||
<td>11<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>4</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>1<br /> | |||
</td> | |||
<td>3<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>8<br /> | |||
</td> | |||
<td>10<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>7</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>2<br /> | |||
</td> | |||
<td>4<br /> | |||
</td> | |||
<td><span style="background-color: #ffcc44;">6</span><br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>9<br /> | |||
</td> | |||
<td>11<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>9</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>2<br /> | |||
</td> | |||
<td>4<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>9<br /> | |||
</td> | |||
<td>10<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>11</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>2<br /> | |||
</td> | |||
<td>3<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td>7<br /> | |||
</td> | |||
<td>8<br /> | |||
</td> | |||
<td>10<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>12</strong><br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>1<br /> | |||
</td> | |||
<td>3<br /> | |||
</td> | |||
<td>5<br /> | |||
</td> | |||
<td><span style="background-color: #ffcc44;">6</span><br /> | |||
</td> | |||
<td>8<br /> | |||
</td> | |||
<td>10<br /> | |||
</td> | |||
<td>12<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | |||
Interval matrix as note names:<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<td><br /> | |||
</td> | |||
<td><strong>1</strong><br /> | |||
</td> | |||
<td><strong>2</strong><br /> | |||
</td> | |||
<td><strong>3</strong><br /> | |||
</td> | |||
<td><strong>4</strong><br /> | |||
</td> | |||
<td><strong>5</strong><br /> | |||
</td> | |||
<td><strong>6</strong><br /> | |||
</td> | |||
<td><strong>7</strong><br /> | |||
</td> | |||
<td><strong>(8)</strong><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>C</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>D<br /> | |||
</td> | |||
<td>E<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>A<br /> | |||
</td> | |||
<td>B<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>D</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>D<br /> | |||
</td> | |||
<td>Eb<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>A<br /> | |||
</td> | |||
<td>B<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>E</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>Db<br /> | |||
</td> | |||
<td>Eb<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>Ab<br /> | |||
</td> | |||
<td>B<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>F</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>D<br /> | |||
</td> | |||
<td>E<br /> | |||
</td> | |||
<td><span style="background-color: #ffcc44;">F#</span><br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>A<br /> | |||
</td> | |||
<td>B<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>G</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>D<br /> | |||
</td> | |||
<td>E<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>A<br /> | |||
</td> | |||
<td>Bb<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>A</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>D<br /> | |||
</td> | |||
<td>Eb<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td>G<br /> | |||
</td> | |||
<td>Ab<br /> | |||
</td> | |||
<td>Bb<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><strong>B</strong><br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
<td>Db<br /> | |||
</td> | |||
<td>Eb<br /> | |||
</td> | |||
<td>F<br /> | |||
</td> | |||
<td><span style="background-color: #ffcc44;">Gb</span><br /> | |||
</td> | |||
<td>Ab<br /> | |||
</td> | |||
<td>Bb<br /> | |||
</td> | |||
<td>C<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | |||
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, could have constant structure!)<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:3 -->See also</h1> | |||
<a class="wiki_link" href="/Scale%20properties%20simplified">Scale properties simplified</a><br /> | |||
<a class="wiki_link" href="/epimorphic">epimorphic</a><br /> | |||
<a class="wiki_link_ext" href="http://tonalsoft.com/enc/c/constant-structure.aspx" rel="nofollow">Constant structure</a> (Tonalsoft Encyclopedia)<br /> | |||
<a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMOS.html#cs" rel="nofollow">Introduction to Erv Wilson's Moments of Symmetry</a><br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;26024358&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript"> | <!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;26024358&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript"> |
Revision as of 16:30, 24 May 2014
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author spt3125 and made on 2014-05-24 16:30:03 UTC.
- The original revision id was 511013618.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
A [[scale]] is said to have //constant structure// (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. The term "constant structure" seems to have been first used by [[Erv Wilson]]. To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). =Examples= This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 Here is the interval matrix of this scale: || || **1** || **2** || **3** || **4** || **5** || **(6)** || || **1/1** || 1/1 || 9/8 || 5/4 || 3/2 || 5/3 || 2/1 || || **9/8** || 1/1 || 10/9 || 4/3 || 40/27 || 16/9 || 2/1 || || **5/4** || 1/1 || 6/5 || 4/3 || 8/5 || 9/5 || 2/1 || || **3/2** || 1/1 || 10/9 || 4/3 || 3/2 || 5/3 || 2/1 || || **5/3** || 1/1 || 6/5 || 27/20 || 3/2 || 9/5 || 2/1 || Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth". This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 Its interval matrix: || || **1** || **2** || **3** || **4** || **5** || **(6)** || || **1/1** || 1/1 || 25/24 || <span style="background-color: #ffcc44;">6/5</span> || 3/2 || <span style="background-color: #ffcc44;">5/3</span> || 2/1 || || **25/24** || 1/1 || 144/125 || 36/25 || <span style="background-color: #ffcc44;">8/5</span> || 48/25 || 2/1 || || **6/5** || 1/1 || <span style="background-color: #ffcc44;">5/4</span> || 25/18 || <span style="background-color: #ffcc44;">5/3</span> || 125/72 || 2/1 || || **3/2** || 1/1 || 10/9 || 4/3 || 25/18 || <span style="background-color: #ffcc44;">8/5</span> || 2/1 || || **5/3** || 1/1 || <span style="background-color: #ffcc44;">6/5</span> || <span style="background-color: #ffcc44;">5/4</span> || 36/25 || 9/5 || 2/1 || Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure. Another example of a familiar scale that is not CS is the 7-note diatonic scale in [[12edo]]. Interval matrix as steps of 12edo: || || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** || || 0 || 0 || 2 || 4 || 5 || 7 || 9 || 11 || 12 || || **2** || 0 || 2 || 3 || 5 || 7 || 9 || 11 || 12 || || **4** || 0 || 1 || 3 || 5 || 7 || 8 || 10 || 12 || || **7** || 0 || 2 || 4 || <span style="background-color: #ffcc44;">6</span> || 7 || 9 || 11 || 12 || || **9** || 0 || 2 || 4 || 5 || 7 || 9 || 10 || 12 || || **11** || 0 || 2 || 3 || 5 || 7 || 8 || 10 || 12 || || **12** || 0 || 1 || 3 || 5 || <span style="background-color: #ffcc44;">6</span> || 8 || 10 || 12 || Interval matrix as note names: || || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** || || **C** || C || D || E || F || G || A || B || C || || **D** || C || D || Eb || F || G || A || B || C || || **E** || C || Db || Eb || F || G || Ab || B || C || || **F** || C || D || E || <span style="background-color: #ffcc44;">F#</span> || G || A || B || C || || **G** || C || D || E || F || G || A || Bb || C || || **A** || C || D || Eb || F || G || Ab || Bb || C || || **B** || C || Db || Eb || F || <span style="background-color: #ffcc44;">Gb</span> || Ab || Bb || C || F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, could have constant structure!) =See also= [[Scale properties simplified]] [[epimorphic]] [[http://tonalsoft.com/enc/c/constant-structure.aspx|Constant structure]] (Tonalsoft Encyclopedia) [[http://anaphoria.com/wilsonintroMOS.html#cs|Introduction to Erv Wilson's Moments of Symmetry]] [[media type="custom" key="26024358"]]
Original HTML content:
<html><head><title>constant structure</title></head><body>A <a class="wiki_link" href="/scale">scale</a> is said to have <em>constant structure</em> (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.<br /> <br /> The term "constant structure" seems to have been first used by <a class="wiki_link" href="/Erv%20Wilson">Erv Wilson</a>.<br /> <br /> To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an <a class="wiki_link" href="/interval%20matrix">interval matrix</a> (<a class="wiki_link" href="/Scala">Scala</a> can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).<br /> <br /> <!-- ws:start:WikiTextHeadingRule:1:<h1> --><h1 id="toc0"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:1 -->Examples</h1> <br /> This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1<br /> Here is the interval matrix of this scale:<br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><strong>1</strong><br /> </td> <td><strong>2</strong><br /> </td> <td><strong>3</strong><br /> </td> <td><strong>4</strong><br /> </td> <td><strong>5</strong><br /> </td> <td><strong>(6)</strong><br /> </td> </tr> <tr> <td><strong>1/1</strong><br /> </td> <td>1/1<br /> </td> <td>9/8<br /> </td> <td>5/4<br /> </td> <td>3/2<br /> </td> <td>5/3<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>9/8</strong><br /> </td> <td>1/1<br /> </td> <td>10/9<br /> </td> <td>4/3<br /> </td> <td>40/27<br /> </td> <td>16/9<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>5/4</strong><br /> </td> <td>1/1<br /> </td> <td>6/5<br /> </td> <td>4/3<br /> </td> <td>8/5<br /> </td> <td>9/5<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>3/2</strong><br /> </td> <td>1/1<br /> </td> <td>10/9<br /> </td> <td>4/3<br /> </td> <td>3/2<br /> </td> <td>5/3<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>5/3</strong><br /> </td> <td>1/1<br /> </td> <td>6/5<br /> </td> <td>27/20<br /> </td> <td>3/2<br /> </td> <td>9/5<br /> </td> <td>2/1<br /> </td> </tr> </table> Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth".<br /> <br /> <br /> This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1<br /> Its interval matrix:<br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><strong>1</strong><br /> </td> <td><strong>2</strong><br /> </td> <td><strong>3</strong><br /> </td> <td><strong>4</strong><br /> </td> <td><strong>5</strong><br /> </td> <td><strong>(6)</strong><br /> </td> </tr> <tr> <td><strong>1/1</strong><br /> </td> <td>1/1<br /> </td> <td>25/24<br /> </td> <td><span style="background-color: #ffcc44;">6/5</span><br /> </td> <td>3/2<br /> </td> <td><span style="background-color: #ffcc44;">5/3</span><br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>25/24</strong><br /> </td> <td>1/1<br /> </td> <td>144/125<br /> </td> <td>36/25<br /> </td> <td><span style="background-color: #ffcc44;">8/5</span><br /> </td> <td>48/25<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>6/5</strong><br /> </td> <td>1/1<br /> </td> <td><span style="background-color: #ffcc44;">5/4</span><br /> </td> <td>25/18<br /> </td> <td><span style="background-color: #ffcc44;">5/3</span><br /> </td> <td>125/72<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>3/2</strong><br /> </td> <td>1/1<br /> </td> <td>10/9<br /> </td> <td>4/3<br /> </td> <td>25/18<br /> </td> <td><span style="background-color: #ffcc44;">8/5</span><br /> </td> <td>2/1<br /> </td> </tr> <tr> <td><strong>5/3</strong><br /> </td> <td>1/1<br /> </td> <td><span style="background-color: #ffcc44;">6/5</span><br /> </td> <td><span style="background-color: #ffcc44;">5/4</span><br /> </td> <td>36/25<br /> </td> <td>9/5<br /> </td> <td>2/1<br /> </td> </tr> </table> Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure.<br /> <br /> <br /> Another example of a familiar scale that is not CS is the 7-note diatonic scale in <a class="wiki_link" href="/12edo">12edo</a>.<br /> Interval matrix as steps of 12edo:<br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><strong>1</strong><br /> </td> <td><strong>2</strong><br /> </td> <td><strong>3</strong><br /> </td> <td><strong>4</strong><br /> </td> <td><strong>5</strong><br /> </td> <td><strong>6</strong><br /> </td> <td><strong>7</strong><br /> </td> <td><strong>(8)</strong><br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td>2<br /> </td> <td>4<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>9<br /> </td> <td>11<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>2</strong><br /> </td> <td>0<br /> </td> <td>2<br /> </td> <td>3<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>9<br /> </td> <td>11<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>4</strong><br /> </td> <td>0<br /> </td> <td>1<br /> </td> <td>3<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>10<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>7</strong><br /> </td> <td>0<br /> </td> <td>2<br /> </td> <td>4<br /> </td> <td><span style="background-color: #ffcc44;">6</span><br /> </td> <td>7<br /> </td> <td>9<br /> </td> <td>11<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>9</strong><br /> </td> <td>0<br /> </td> <td>2<br /> </td> <td>4<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>9<br /> </td> <td>10<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>11</strong><br /> </td> <td>0<br /> </td> <td>2<br /> </td> <td>3<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>10<br /> </td> <td>12<br /> </td> </tr> <tr> <td><strong>12</strong><br /> </td> <td>0<br /> </td> <td>1<br /> </td> <td>3<br /> </td> <td>5<br /> </td> <td><span style="background-color: #ffcc44;">6</span><br /> </td> <td>8<br /> </td> <td>10<br /> </td> <td>12<br /> </td> </tr> </table> <br /> Interval matrix as note names:<br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><strong>1</strong><br /> </td> <td><strong>2</strong><br /> </td> <td><strong>3</strong><br /> </td> <td><strong>4</strong><br /> </td> <td><strong>5</strong><br /> </td> <td><strong>6</strong><br /> </td> <td><strong>7</strong><br /> </td> <td><strong>(8)</strong><br /> </td> </tr> <tr> <td><strong>C</strong><br /> </td> <td>C<br /> </td> <td>D<br /> </td> <td>E<br /> </td> <td>F<br /> </td> <td>G<br /> </td> <td>A<br /> </td> <td>B<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>D</strong><br /> </td> <td>C<br /> </td> <td>D<br /> </td> <td>Eb<br /> </td> <td>F<br /> </td> <td>G<br /> </td> <td>A<br /> </td> <td>B<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>E</strong><br /> </td> <td>C<br /> </td> <td>Db<br /> </td> <td>Eb<br /> </td> <td>F<br /> </td> <td>G<br /> </td> <td>Ab<br /> </td> <td>B<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>F</strong><br /> </td> <td>C<br /> </td> <td>D<br /> </td> <td>E<br /> </td> <td><span style="background-color: #ffcc44;">F#</span><br /> </td> <td>G<br /> </td> <td>A<br /> </td> <td>B<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>G</strong><br /> </td> <td>C<br /> </td> <td>D<br /> </td> <td>E<br /> </td> <td>F<br /> </td> <td>G<br /> </td> <td>A<br /> </td> <td>Bb<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>A</strong><br /> </td> <td>C<br /> </td> <td>D<br /> </td> <td>Eb<br /> </td> <td>F<br /> </td> <td>G<br /> </td> <td>Ab<br /> </td> <td>Bb<br /> </td> <td>C<br /> </td> </tr> <tr> <td><strong>B</strong><br /> </td> <td>C<br /> </td> <td>Db<br /> </td> <td>Eb<br /> </td> <td>F<br /> </td> <td><span style="background-color: #ffcc44;">Gb</span><br /> </td> <td>Ab<br /> </td> <td>Bb<br /> </td> <td>C<br /> </td> </tr> </table> <br /> F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, could have constant structure!)<br /> <br /> <!-- ws:start:WikiTextHeadingRule:3:<h1> --><h1 id="toc1"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:3 -->See also</h1> <a class="wiki_link" href="/Scale%20properties%20simplified">Scale properties simplified</a><br /> <a class="wiki_link" href="/epimorphic">epimorphic</a><br /> <a class="wiki_link_ext" href="http://tonalsoft.com/enc/c/constant-structure.aspx" rel="nofollow">Constant structure</a> (Tonalsoft Encyclopedia)<br /> <a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMOS.html#cs" rel="nofollow">Introduction to Erv Wilson's Moments of Symmetry</a><br /> <br /> <!-- ws:start:WikiTextMediaRule:0:<img src="http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&w=0" class="WikiMedia WikiMediaCustom" id="wikitext@@media@@type=&quot;custom&quot; key=&quot;26024358&quot;" title="Custom Media"/> --><script type="text/javascript"> /*<![CDATA[*/ document.write('<style type="text/css"> .wiki_table td { padding: 5px; text-align:center; } <\/style>'); /*]]>*/ </script><!-- ws:end:WikiTextMediaRule:0 --></body></html>