Constant structure: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Sarzadoce
**Imported revision 553711800 - Original comment: **
Wikispaces>Sarzadoce
**Imported revision 553712130 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2015-06-11 15:55:28 UTC</tt>.<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2015-06-11 15:57:11 UTC</tt>.<br>
: The original revision id was <tt>553711800</tt>.<br>
: The original revision id was <tt>553712130</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 61: Line 61:
=Density of CS Scales in EDO's=  
=Density of CS Scales in EDO's=  


|| **EDO** || **Percent of Scales CS** || **Corresponding Fraction** ||
|| **EDO** || **Number of CS Scales** || **Percent of Scales CS** || **Corresponding Fraction** ||
|| 1 || 100.0% || 1/1 ||
|| 1 || 1 || 100.0% || 1/1 ||
|| 2 || 100.0% || 1/1 ||
|| 2 || 1 || 100.0% || 1/1 ||
|| 3 || 100.0% || 1/1 ||
|| 3 || 2 || 100.0% || 1/1 ||
|| 4 || 66.7% || 2/3 ||
|| 4 || 2 || 66.7% || 2/3 ||
|| 5 || 83.3% || 5/6 ||
|| 5 || 5 || 83.3% || 5/6 ||
|| 6 || 44.4% || 4/9 ||
|| 6 || 4 || 44.4% || 4/9 ||
|| 7 || 61.1% || 11/18 ||
|| 7 || 11 || 61.1% || 11/18 ||
|| 8 || 36.7% || 11/30 ||
|| 8 || 11 || 36.7% || 11/30 ||
|| 9 || 39.3% || 11/28 ||
|| 9 || 22 || 39.3% || 11/28 ||
|| 10 || 20.2% || 20/99 ||
|| 10 || 20 || 20.2% || 20/99 ||
|| 11 || 24.2% || 15/62 ||
|| 11 || 45 || 24.2% || 15/62 ||
|| 12 || 14.0% || 47/335 ||
|| 12 || 47 || 14.0% || 47/335 ||
|| 13 || 13.5% || 17/126 ||
|| 13 || 85 || 13.5% || 17/126 ||
|| 14 || 7.6% || 88/1161 ||
|| 14 || 88 || 7.6% || 88/1161 ||
|| 15 || 7.5% || 163/2182 ||
|| 15 || 163 || 7.5% || 163/2182 ||
|| 16 || 4.0% || 11/272 ||
|| 16 || 165 || 4.0% || 11/272 ||
|| 17 || 3.8% || 49/1285 ||
|| 17 || 294 || 3.8% || 49/1285 ||
|| 18 || 2.2% || 313/14532 ||
|| 18 || 313 || 2.2% || 313/14532 ||
|| 19 || 1.9% || 89/4599 ||
|| 19 || 534 || 1.9% || 89/4599 ||
|| 20 || 1.0% || 541/52377 ||
|| 20 || 541 || 1.0% || 541/52377 ||


=See also=  
=See also=  
Line 655: Line 655:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;EDO&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;EDO&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Number of CS Scales&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;Percent of Scales CS&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;Percent of Scales CS&lt;/strong&gt;&lt;br /&gt;
Line 662: Line 664:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;1&lt;br /&gt;
         &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
Line 671: Line 675:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2&lt;br /&gt;
         &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;100.0%&lt;br /&gt;
         &lt;td&gt;100.0%&lt;br /&gt;
Line 679: Line 685:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3&lt;br /&gt;
         &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;100.0%&lt;br /&gt;
         &lt;td&gt;100.0%&lt;br /&gt;
Line 687: Line 695:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4&lt;br /&gt;
         &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;66.7%&lt;br /&gt;
         &lt;td&gt;66.7%&lt;br /&gt;
Line 694: Line 704:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;5&lt;br /&gt;
         &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
Line 703: Line 715:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6&lt;br /&gt;
         &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;44.4%&lt;br /&gt;
         &lt;td&gt;44.4%&lt;br /&gt;
Line 711: Line 725:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7&lt;br /&gt;
         &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;61.1%&lt;br /&gt;
         &lt;td&gt;61.1%&lt;br /&gt;
Line 719: Line 735:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;8&lt;br /&gt;
         &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;36.7%&lt;br /&gt;
         &lt;td&gt;36.7%&lt;br /&gt;
Line 727: Line 745:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;9&lt;br /&gt;
         &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;39.3%&lt;br /&gt;
         &lt;td&gt;39.3%&lt;br /&gt;
Line 735: Line 755:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;10&lt;br /&gt;
         &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;20.2%&lt;br /&gt;
         &lt;td&gt;20.2%&lt;br /&gt;
Line 743: Line 765:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;11&lt;br /&gt;
         &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;24.2%&lt;br /&gt;
         &lt;td&gt;24.2%&lt;br /&gt;
Line 751: Line 775:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;12&lt;br /&gt;
         &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;14.0%&lt;br /&gt;
         &lt;td&gt;14.0%&lt;br /&gt;
Line 759: Line 785:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;13&lt;br /&gt;
         &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13.5%&lt;br /&gt;
         &lt;td&gt;13.5%&lt;br /&gt;
Line 767: Line 795:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;14&lt;br /&gt;
         &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7.6%&lt;br /&gt;
         &lt;td&gt;7.6%&lt;br /&gt;
Line 775: Line 805:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;15&lt;br /&gt;
         &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7.5%&lt;br /&gt;
         &lt;td&gt;7.5%&lt;br /&gt;
Line 783: Line 815:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;16&lt;br /&gt;
         &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4.0%&lt;br /&gt;
         &lt;td&gt;4.0%&lt;br /&gt;
Line 791: Line 825:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;17&lt;br /&gt;
         &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;294&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3.8%&lt;br /&gt;
         &lt;td&gt;3.8%&lt;br /&gt;
Line 799: Line 835:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;18&lt;br /&gt;
         &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;313&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2.2%&lt;br /&gt;
         &lt;td&gt;2.2%&lt;br /&gt;
Line 807: Line 845:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;19&lt;br /&gt;
         &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;534&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1.9%&lt;br /&gt;
         &lt;td&gt;1.9%&lt;br /&gt;
Line 815: Line 855:
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;20&lt;br /&gt;
         &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;541&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1.0%&lt;br /&gt;
         &lt;td&gt;1.0%&lt;br /&gt;

Revision as of 15:57, 11 June 2015

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Sarzadoce and made on 2015-06-11 15:57:11 UTC.
The original revision id was 553712130.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

A [[scale]] is said to have //constant structure// (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.

The term "constant structure" seems to have been first used by [[Erv Wilson]].

To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).

=Examples= 

This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1
Here is the interval matrix of this scale:
||   || **1** || **2** || **3** || **4** || **5** || **(6)** ||
|| **1/1** || 1/1 || 9/8 || 5/4 || 3/2 || 5/3 || 2/1 ||
|| **9/8** || 1/1 || 10/9 || 4/3 || 40/27 || 16/9 || 2/1 ||
|| **5/4** || 1/1 || 6/5 || 4/3 || 8/5 || 9/5 || 2/1 ||
|| **3/2** || 1/1 || 10/9 || 4/3 || 3/2 || 5/3 || 2/1 ||
|| **5/3** || 1/1 || 6/5 || 27/20 || 3/2 || 9/5 || 2/1 ||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth".


This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1
Its interval matrix:
||   || **1** || **2** || **3** || **4** || **5** || **(6)** ||
|| **1/1** || 1/1 || 25/24 || <span style="background-color: #ffcc44;">6/5</span> || 3/2 || <span style="background-color: #ffcc44;">5/3</span> || 2/1 ||
|| **25/24** || 1/1 || 144/125 || 36/25 || <span style="background-color: #ffcc44;">8/5</span> || 48/25 || 2/1 ||
|| **6/5** || 1/1 || <span style="background-color: #ffcc44;">5/4</span> || 25/18 || <span style="background-color: #ffcc44;">5/3</span> || 125/72 || 2/1 ||
|| **3/2** || 1/1 || 10/9 || 4/3 || 25/18 || <span style="background-color: #ffcc44;">8/5</span> || 2/1 ||
|| **5/3** || 1/1 || <span style="background-color: #ffcc44;">6/5</span> || <span style="background-color: #ffcc44;">5/4</span> || 36/25 || 9/5 || 2/1 ||
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure.


Another example of a familiar scale that is not CS is the 7-note diatonic scale in [[12edo]].
Interval matrix as steps of 12edo:
||   || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
|| 0 || 0 || 2 || 4 || 5 || 7 || 9 || 11 || 12 ||
|| **2** || 0 || 2 || 3 || 5 || 7 || 9 || 11 || 12 ||
|| **4** || 0 || 1 || 3 || 5 || 7 || 8 || 10 || 12 ||
|| **7** || 0 || 2 || 4 || <span style="background-color: #ffcc44;">6</span> || 7 || 9 || 11 || 12 ||
|| **9** || 0 || 2 || 4 || 5 || 7 || 9 || 10 || 12 ||
|| **11** || 0 || 2 || 3 || 5 || 7 || 8 || 10 || 12 ||
|| **12** || 0 || 1 || 3 || 5 || <span style="background-color: #ffcc44;">6</span> || 8 || 10 || 12 ||

Interval matrix as note names:
||   || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
|| **C** || C || D || E || F || G || A || B || C ||
|| **D** || C || D || Eb || F || G || A || B || C ||
|| **E** || C || Db || Eb || F || G || Ab || B || C ||
|| **F** || C || D || E || <span style="background-color: #ffcc44;">F#</span> || G || A || B || C ||
|| **G** || C || D || E || F || G || A || Bb || C ||
|| **A** || C || D || Eb || F || G || Ab || Bb || C ||
|| **B** || C || Db || Eb || F || <span style="background-color: #ffcc44;">Gb</span> || Ab || Bb || C ||

F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)

=Density of CS Scales in EDO's= 

|| **EDO** || **Number of CS Scales** || **Percent of Scales CS** || **Corresponding Fraction** ||
|| 1 || 1 || 100.0% || 1/1 ||
|| 2 || 1 || 100.0% || 1/1 ||
|| 3 || 2 || 100.0% || 1/1 ||
|| 4 || 2 || 66.7% || 2/3 ||
|| 5 || 5 || 83.3% || 5/6 ||
|| 6 || 4 || 44.4% || 4/9 ||
|| 7 || 11 || 61.1% || 11/18 ||
|| 8 || 11 || 36.7% || 11/30 ||
|| 9 || 22 || 39.3% || 11/28 ||
|| 10 || 20 || 20.2% || 20/99 ||
|| 11 || 45 || 24.2% || 15/62 ||
|| 12 || 47 || 14.0% || 47/335 ||
|| 13 || 85 || 13.5% || 17/126 ||
|| 14 || 88 || 7.6% || 88/1161 ||
|| 15 || 163 || 7.5% || 163/2182 ||
|| 16 || 165 || 4.0% || 11/272 ||
|| 17 || 294 || 3.8% || 49/1285 ||
|| 18 || 313 || 2.2% || 313/14532 ||
|| 19 || 534 || 1.9% || 89/4599 ||
|| 20 || 541 || 1.0% || 541/52377 ||

=See also= 
[[Scale properties simplified]]
[[epimorphic]]
[[http://tonalsoft.com/enc/c/constant-structure.aspx|Constant structure]] (Tonalsoft Encyclopedia)
[[http://anaphoria.com/wilsonintroMOS.html#cs|Introduction to Erv Wilson's Moments of Symmetry]]

[[media type="custom" key="26024358"]]

Original HTML content:

<html><head><title>constant structure</title></head><body>A <a class="wiki_link" href="/scale">scale</a> is said to have <em>constant structure</em> (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.<br />
<br />
The term &quot;constant structure&quot; seems to have been first used by <a class="wiki_link" href="/Erv%20Wilson">Erv Wilson</a>.<br />
<br />
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an <a class="wiki_link" href="/interval%20matrix">interval matrix</a> (<a class="wiki_link" href="/Scala">Scala</a> can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).<br />
<br />
<!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:1 -->Examples</h1>
 <br />
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1<br />
Here is the interval matrix of this scale:<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>2</strong><br />
</td>
        <td><strong>3</strong><br />
</td>
        <td><strong>4</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>(6)</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>1/1</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>9/8<br />
</td>
        <td>5/4<br />
</td>
        <td>3/2<br />
</td>
        <td>5/3<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>9/8</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>10/9<br />
</td>
        <td>4/3<br />
</td>
        <td>40/27<br />
</td>
        <td>16/9<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>5/4</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>6/5<br />
</td>
        <td>4/3<br />
</td>
        <td>8/5<br />
</td>
        <td>9/5<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>3/2</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>10/9<br />
</td>
        <td>4/3<br />
</td>
        <td>3/2<br />
</td>
        <td>5/3<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>5/3</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>6/5<br />
</td>
        <td>27/20<br />
</td>
        <td>3/2<br />
</td>
        <td>9/5<br />
</td>
        <td>2/1<br />
</td>
    </tr>
</table>

Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the &quot;fourth&quot; of this scale - never the &quot;third&quot; or &quot;fifth&quot;.<br />
<br />
<br />
This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1<br />
Its interval matrix:<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>2</strong><br />
</td>
        <td><strong>3</strong><br />
</td>
        <td><strong>4</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>(6)</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>1/1</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>25/24<br />
</td>
        <td><span style="background-color: #ffcc44;">6/5</span><br />
</td>
        <td>3/2<br />
</td>
        <td><span style="background-color: #ffcc44;">5/3</span><br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>25/24</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>144/125<br />
</td>
        <td>36/25<br />
</td>
        <td><span style="background-color: #ffcc44;">8/5</span><br />
</td>
        <td>48/25<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>6/5</strong><br />
</td>
        <td>1/1<br />
</td>
        <td><span style="background-color: #ffcc44;">5/4</span><br />
</td>
        <td>25/18<br />
</td>
        <td><span style="background-color: #ffcc44;">5/3</span><br />
</td>
        <td>125/72<br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>3/2</strong><br />
</td>
        <td>1/1<br />
</td>
        <td>10/9<br />
</td>
        <td>4/3<br />
</td>
        <td>25/18<br />
</td>
        <td><span style="background-color: #ffcc44;">8/5</span><br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td><strong>5/3</strong><br />
</td>
        <td>1/1<br />
</td>
        <td><span style="background-color: #ffcc44;">6/5</span><br />
</td>
        <td><span style="background-color: #ffcc44;">5/4</span><br />
</td>
        <td>36/25<br />
</td>
        <td>9/5<br />
</td>
        <td>2/1<br />
</td>
    </tr>
</table>

Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the &quot;second&quot; and &quot;third&quot; steps of the scale. Thus, this scale does not have constant structure.<br />
<br />
<br />
Another example of a familiar scale that is not CS is the 7-note diatonic scale in <a class="wiki_link" href="/12edo">12edo</a>.<br />
Interval matrix as steps of 12edo:<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>2</strong><br />
</td>
        <td><strong>3</strong><br />
</td>
        <td><strong>4</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>6</strong><br />
</td>
        <td><strong>7</strong><br />
</td>
        <td><strong>(8)</strong><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>2<br />
</td>
        <td>4<br />
</td>
        <td>5<br />
</td>
        <td>7<br />
</td>
        <td>9<br />
</td>
        <td>11<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>2</strong><br />
</td>
        <td>0<br />
</td>
        <td>2<br />
</td>
        <td>3<br />
</td>
        <td>5<br />
</td>
        <td>7<br />
</td>
        <td>9<br />
</td>
        <td>11<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>4</strong><br />
</td>
        <td>0<br />
</td>
        <td>1<br />
</td>
        <td>3<br />
</td>
        <td>5<br />
</td>
        <td>7<br />
</td>
        <td>8<br />
</td>
        <td>10<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>7</strong><br />
</td>
        <td>0<br />
</td>
        <td>2<br />
</td>
        <td>4<br />
</td>
        <td><span style="background-color: #ffcc44;">6</span><br />
</td>
        <td>7<br />
</td>
        <td>9<br />
</td>
        <td>11<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>9</strong><br />
</td>
        <td>0<br />
</td>
        <td>2<br />
</td>
        <td>4<br />
</td>
        <td>5<br />
</td>
        <td>7<br />
</td>
        <td>9<br />
</td>
        <td>10<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>11</strong><br />
</td>
        <td>0<br />
</td>
        <td>2<br />
</td>
        <td>3<br />
</td>
        <td>5<br />
</td>
        <td>7<br />
</td>
        <td>8<br />
</td>
        <td>10<br />
</td>
        <td>12<br />
</td>
    </tr>
    <tr>
        <td><strong>12</strong><br />
</td>
        <td>0<br />
</td>
        <td>1<br />
</td>
        <td>3<br />
</td>
        <td>5<br />
</td>
        <td><span style="background-color: #ffcc44;">6</span><br />
</td>
        <td>8<br />
</td>
        <td>10<br />
</td>
        <td>12<br />
</td>
    </tr>
</table>

<br />
Interval matrix as note names:<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>2</strong><br />
</td>
        <td><strong>3</strong><br />
</td>
        <td><strong>4</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>6</strong><br />
</td>
        <td><strong>7</strong><br />
</td>
        <td><strong>(8)</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>C</strong><br />
</td>
        <td>C<br />
</td>
        <td>D<br />
</td>
        <td>E<br />
</td>
        <td>F<br />
</td>
        <td>G<br />
</td>
        <td>A<br />
</td>
        <td>B<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>D</strong><br />
</td>
        <td>C<br />
</td>
        <td>D<br />
</td>
        <td>Eb<br />
</td>
        <td>F<br />
</td>
        <td>G<br />
</td>
        <td>A<br />
</td>
        <td>B<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>E</strong><br />
</td>
        <td>C<br />
</td>
        <td>Db<br />
</td>
        <td>Eb<br />
</td>
        <td>F<br />
</td>
        <td>G<br />
</td>
        <td>Ab<br />
</td>
        <td>B<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>F</strong><br />
</td>
        <td>C<br />
</td>
        <td>D<br />
</td>
        <td>E<br />
</td>
        <td><span style="background-color: #ffcc44;">F#</span><br />
</td>
        <td>G<br />
</td>
        <td>A<br />
</td>
        <td>B<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>G</strong><br />
</td>
        <td>C<br />
</td>
        <td>D<br />
</td>
        <td>E<br />
</td>
        <td>F<br />
</td>
        <td>G<br />
</td>
        <td>A<br />
</td>
        <td>Bb<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>A</strong><br />
</td>
        <td>C<br />
</td>
        <td>D<br />
</td>
        <td>Eb<br />
</td>
        <td>F<br />
</td>
        <td>G<br />
</td>
        <td>Ab<br />
</td>
        <td>Bb<br />
</td>
        <td>C<br />
</td>
    </tr>
    <tr>
        <td><strong>B</strong><br />
</td>
        <td>C<br />
</td>
        <td>Db<br />
</td>
        <td>Eb<br />
</td>
        <td>F<br />
</td>
        <td><span style="background-color: #ffcc44;">Gb</span><br />
</td>
        <td>Ab<br />
</td>
        <td>Bb<br />
</td>
        <td>C<br />
</td>
    </tr>
</table>

<br />
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)<br />
<br />
<!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="Density of CS Scales in EDO's"></a><!-- ws:end:WikiTextHeadingRule:3 -->Density of CS Scales in EDO's</h1>
 <br />


<table class="wiki_table">
    <tr>
        <td><strong>EDO</strong><br />
</td>
        <td><strong>Number of CS Scales</strong><br />
</td>
        <td><strong>Percent of Scales CS</strong><br />
</td>
        <td><strong>Corresponding Fraction</strong><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1<br />
</td>
        <td>100.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1<br />
</td>
        <td>100.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>2<br />
</td>
        <td>100.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2<br />
</td>
        <td>66.7%<br />
</td>
        <td>2/3<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>5<br />
</td>
        <td>83.3%<br />
</td>
        <td>5/6<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>4<br />
</td>
        <td>44.4%<br />
</td>
        <td>4/9<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>11<br />
</td>
        <td>61.1%<br />
</td>
        <td>11/18<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>11<br />
</td>
        <td>36.7%<br />
</td>
        <td>11/30<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>22<br />
</td>
        <td>39.3%<br />
</td>
        <td>11/28<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>20<br />
</td>
        <td>20.2%<br />
</td>
        <td>20/99<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>45<br />
</td>
        <td>24.2%<br />
</td>
        <td>15/62<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>47<br />
</td>
        <td>14.0%<br />
</td>
        <td>47/335<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>85<br />
</td>
        <td>13.5%<br />
</td>
        <td>17/126<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>88<br />
</td>
        <td>7.6%<br />
</td>
        <td>88/1161<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>163<br />
</td>
        <td>7.5%<br />
</td>
        <td>163/2182<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>165<br />
</td>
        <td>4.0%<br />
</td>
        <td>11/272<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>294<br />
</td>
        <td>3.8%<br />
</td>
        <td>49/1285<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>313<br />
</td>
        <td>2.2%<br />
</td>
        <td>313/14532<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>534<br />
</td>
        <td>1.9%<br />
</td>
        <td>89/4599<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>541<br />
</td>
        <td>1.0%<br />
</td>
        <td>541/52377<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc2"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:5 -->See also</h1>
 <a class="wiki_link" href="/Scale%20properties%20simplified">Scale properties simplified</a><br />
<a class="wiki_link" href="/epimorphic">epimorphic</a><br />
<a class="wiki_link_ext" href="http://tonalsoft.com/enc/c/constant-structure.aspx" rel="nofollow">Constant structure</a> (Tonalsoft Encyclopedia)<br />
<a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMOS.html#cs" rel="nofollow">Introduction to Erv Wilson's Moments of Symmetry</a><br />
<br />
<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;26024358&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript">
/*<![CDATA[*/
document.write('<style type="text/css"> .wiki_table td { padding: 5px; text-align:center; } <\/style>');
/*]]>*/
</script><!-- ws:end:WikiTextMediaRule:0 --></body></html>