Hemififths/Chords: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 287997524 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 287999812 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 15:02:00 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>287999812</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths". | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths". | ||
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords. | |||
=Triads= | =Triads= | ||
Line 249: | Line 251: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &quot;nofives&quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &quot;Nofives&quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &quot;hemififths&quot;.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &quot;nofives&quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &quot;Nofives&quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &quot;hemififths&quot;.<br /> | ||
<br /> | |||
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> |
Revision as of 15:02, 21 December 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-21 15:02:00 UTC.
- The original revision id was 287999812.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths". A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords. =Triads= || Number || Chord || Transversal || Type || || 1 || 0-1-2 || 1-11/9-3/2 || rastmic || || 2 || 0-1-3 || 1-11/9-11/6 || utonal || || 3 || 0-2-3 || 1-3/2-11/6 || otonal || || 4 || 0-1-4 || 1-11/9-9/8 || rastmic || || 5 || 0-2-4 || 1-3/2-9/8 || ambitonal || || 6 || 0-3-4 || 1-11/6-9/8 || rastmic || || 7 || 0-1-5 || 1-11/9-11/8 || utonal || || 8 || 0-2-5 || 1-3/2-11/8 || otonal || || 9 || 0-3-5 || 1-11/6-11/8 || utonal || || 10 || 0-4-5 || 1-9/8-11/8 || otonal || || 11 || 0-3-8 || 1-11/6-14/11 || hemimin || || 12 || 0-4-8 || 1-9/8-14/11 || pentacircle || || 13 || 0-5-8 || 1-11/8-14/11 || hemimin || || 14 || 0-1-9 || 1-11/9-14/9 || otonal || || 15 || 0-4-9 || 1-9/8-14/9 || pentacircle || || 16 || 0-5-9 || 1-11/8-14/9 || pentacircle || || 17 || 0-8-9 || 1-14/11-14/9 || utonal || || 18 || 0-2-11 || 1-3/2-7/6 || otonal || || 19 || 0-3-11 || 1-11/6-7/6 || otonal || || 20 || 0-8-11 || 1-14/11-7/6 || utonal || || 21 || 0-9-11 || 1-14/9-7/6 || utonal || || 22 || 0-1-12 || 1-11/9-10/7 || swetismic || || 23 || 0-3-12 || 1-11/6-10/7 || swetismic || || 24 || 0-4-12 || 1-9/8-10/7 || werckismic || || 25 || 0-8-12 || 1-14/11-10/7 || werckismic || || 26 || 0-9-12 || 1-14/9-10/7 || swetismic || || 27 || 0-11-12 || 1-7/6-10/7 || swetismic || || 28 || 0-1-13 || 1-11/9-7/4 || werckismic || || 29 || 0-2-13 || 1-3/2-7/4 || otonal || || 30 || 0-4-13 || 1-9/8-7/4 || otonal || || 31 || 0-5-13 || 1-11/8-7/4 || otonal || || 32 || 0-8-13 || 1-14/11-7/4 || utonal || || 33 || 0-9-13 || 1-14/9-7/4 || utonal || || 34 || 0-11-13 || 1-7/6-7/4 || utonal || || 35 || 0-12-13 || 1-10/7-7/4 || werckismic || || 36 || 0-8-20 || 1-14/11-20/11 || otonal || || 37 || 0-9-20 || 1-14/9-20/11 || swetismic || || 38 || 0-11-20 || 1-7/6-20/11 || swetismic || || 39 || 0-12-20 || 1-10/7-20/11 || utonal || || 40 || 0-1-21 || 1-11/9-10/9 || otonal || || 41 || 0-8-21 || 1-14/11-10/9 || werckismic || || 42 || 0-9-21 || 1-14/9-10/9 || otonal || || 43 || 0-12-21 || 1-10/7-10/9 || utonal || || 44 || 0-13-21 || 1-7/4-10/9 || werckismic || || 45 || 0-20-21 || 1-20/11-10/9 || utonal || || 46 || 0-2-23 || 1-3/2-5/3 || otonal || || 47 || 0-3-23 || 1-11/6-5/3 || otonal || || 48 || 0-11-23 || 1-7/6-5/3 || otonal || || 49 || 0-12-23 || 1-10/7-5/3 || utonal || || 50 || 0-20-23 || 1-20/11-5/3 || utonal || || 51 || 0-21-23 || 1-10/9-5/3 || utonal || || 52 || 0-2-25 || 1-3/2-5/4 || otonal || || 53 || 0-4-25 || 1-9/8-5/4 || otonal || || 54 || 0-5-25 || 1-11/8-5/4 || otonal || || 55 || 0-12-25 || 1-10/7-5/4 || utonal || || 56 || 0-13-25 || 1-7/4-5/4 || otonal || || 57 || 0-20-25 || 1-20/11-5/4 || utonal || || 58 || 0-21-25 || 1-10/9-5/4 || utonal || || 59 || 0-23-25 || 1-5/3-5/4 || utonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic || || 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic || || 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic || || 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic || || 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic || || 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal || || 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal || || 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic || || 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal || || 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic || || 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives || || 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin || || 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives || || 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives || || 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle || || 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle || || 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle || || 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives || || 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal || || 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin || || 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal || || 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic || || 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove || || 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove || || 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths || || 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele || || 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic || || 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths || || 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove || || 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic || || 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove || || 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic || || 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove || || 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove || || 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal || || 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic || || 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal || || 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal || || 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle || || 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin || || 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic || || 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle || || 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle || || 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal || || 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal || || 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal || || 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal || || 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove || || 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic || || 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic || || 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove || || 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove || || 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic || || 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic || || 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic || || 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic || || 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic || || 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic || || 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal || || 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic || || 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic || || 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic || || 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic || || 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic || || 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic || || 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic || || 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic || || 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic || || 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic || || 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal || || 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal || || 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal || || 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal || || 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic || || 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic || || 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic || || 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal || || 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal || || 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal || || 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal || || 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal || || 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal || || 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic || || 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal || || 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal || || 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal || || 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic || || 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal || || 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal || || 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic || || 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal || || 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal || || 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal || || 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal || || 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic || || 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic || || 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic || || 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic || || 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic || || 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives || || 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives || || 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives || || 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove || || 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths || || 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths || || 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths || || 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths || || 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove || || 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove || || 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove || || 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove || || 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal || || 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives || || 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths || || 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele || || 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle || || 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle || || 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives || || 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal || || 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove || || 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele || || 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove || || 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths || || 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove || || 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove || || 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove || || 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic || || 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove || || 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove || || 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic || || 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic || || 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove || || 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic || || 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic || || 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove || || 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic || || 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove || || 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove || || 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic || || 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic || || 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal || || 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic || || 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic || || 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal || || 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal || || 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal || || 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal || || 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal || || 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic || || 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic || || 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal || || 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal || || 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal || || 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic || || 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove || || 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths || || 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives || || 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths || || 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths || || 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove || || 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove || || 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove || || 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove || || 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove || || 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal || || 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||
Original HTML content:
<html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".<br /> <br /> A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2<br /> </td> <td>1-11/9-3/2<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-3<br /> </td> <td>1-11/9-11/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-3<br /> </td> <td>1-3/2-11/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-4<br /> </td> <td>1-11/9-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-4<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-4<br /> </td> <td>1-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-1-5<br /> </td> <td>1-11/9-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-2-5<br /> </td> <td>1-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-3-5<br /> </td> <td>1-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-4-5<br /> </td> <td>1-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-3-8<br /> </td> <td>1-11/6-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-4-8<br /> </td> <td>1-9/8-14/11<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-5-8<br /> </td> <td>1-11/8-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-1-9<br /> </td> <td>1-11/9-14/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-4-9<br /> </td> <td>1-9/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-5-9<br /> </td> <td>1-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-8-9<br /> </td> <td>1-14/11-14/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-11<br /> </td> <td>1-3/2-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-3-11<br /> </td> <td>1-11/6-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-8-11<br /> </td> <td>1-14/11-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-9-11<br /> </td> <td>1-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-1-12<br /> </td> <td>1-11/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-3-12<br /> </td> <td>1-11/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-4-12<br /> </td> <td>1-9/8-10/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-8-12<br /> </td> <td>1-14/11-10/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-9-12<br /> </td> <td>1-14/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-11-12<br /> </td> <td>1-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-1-13<br /> </td> <td>1-11/9-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-2-13<br /> </td> <td>1-3/2-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-4-13<br /> </td> <td>1-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-5-13<br /> </td> <td>1-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-8-13<br /> </td> <td>1-14/11-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-9-13<br /> </td> <td>1-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-11-13<br /> </td> <td>1-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-12-13<br /> </td> <td>1-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-8-20<br /> </td> <td>1-14/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-9-20<br /> </td> <td>1-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-11-20<br /> </td> <td>1-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-12-20<br /> </td> <td>1-10/7-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-1-21<br /> </td> <td>1-11/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-8-21<br /> </td> <td>1-14/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-9-21<br /> </td> <td>1-14/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-12-21<br /> </td> <td>1-10/7-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-13-21<br /> </td> <td>1-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-20-21<br /> </td> <td>1-20/11-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-2-23<br /> </td> <td>1-3/2-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-3-23<br /> </td> <td>1-11/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-11-23<br /> </td> <td>1-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-12-23<br /> </td> <td>1-10/7-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-20-23<br /> </td> <td>1-20/11-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-21-23<br /> </td> <td>1-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-2-25<br /> </td> <td>1-3/2-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-4-25<br /> </td> <td>1-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-5-25<br /> </td> <td>1-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-12-25<br /> </td> <td>1-10/7-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-13-25<br /> </td> <td>1-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-20-25<br /> </td> <td>1-20/11-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-21-25<br /> </td> <td>1-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-23-25<br /> </td> <td>1-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3<br /> </td> <td>1-11/9-3/2-11/6<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-4<br /> </td> <td>1-11/9-3/2-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-3-4<br /> </td> <td>1-11/9-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-3-4<br /> </td> <td>1-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-1-2-5<br /> </td> <td>1-11/9-3/2-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-1-3-5<br /> </td> <td>1-11/9-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-2-3-5<br /> </td> <td>1-3/2-11/6-11/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-1-4-5<br /> </td> <td>1-11/9-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-2-4-5<br /> </td> <td>1-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-3-4-5<br /> </td> <td>1-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-3-4-8<br /> </td> <td>1-11/6-9/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-3-5-8<br /> </td> <td>1-11/6-11/8-14/11<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-4-5-8<br /> </td> <td>1-9/8-11/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-1-4-9<br /> </td> <td>1-11/9-9/8-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-1-5-9<br /> </td> <td>1-11/9-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-4-5-9<br /> </td> <td>1-9/8-11/8-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-4-8-9<br /> </td> <td>1-9/8-14/11-14/9<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-5-8-9<br /> </td> <td>1-11/8-14/11-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-2-3-11<br /> </td> <td>1-3/2-11/6-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-3-8-11<br /> </td> <td>1-11/6-14/11-7/6<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-8-9-11<br /> </td> <td>1-14/11-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-1-3-12<br /> </td> <td>1-11/9-11/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-1-4-12<br /> </td> <td>1-11/9-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-3-4-12<br /> </td> <td>1-11/6-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-3-8-12<br /> </td> <td>1-11/6-14/11-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-4-8-12<br /> </td> <td>1-9/8-14/11-10/7<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-1-9-12<br /> </td> <td>1-11/9-14/9-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-4-9-12<br /> </td> <td>1-9/8-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-8-9-12<br /> </td> <td>1-14/11-14/9-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-3-11-12<br /> </td> <td>1-11/6-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-11-12<br /> </td> <td>1-14/11-7/6-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-9-11-12<br /> </td> <td>1-14/9-7/6-10/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-1-2-13<br /> </td> <td>1-11/9-3/2-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-1-4-13<br /> </td> <td>1-11/9-9/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-2-4-13<br /> </td> <td>1-3/2-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-1-5-13<br /> </td> <td>1-11/9-11/8-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-2-5-13<br /> </td> <td>1-3/2-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-4-5-13<br /> </td> <td>1-9/8-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-4-8-13<br /> </td> <td>1-9/8-14/11-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-5-8-13<br /> </td> <td>1-11/8-14/11-7/4<br /> </td> <td>hemimin<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-1-9-13<br /> </td> <td>1-11/9-14/9-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-4-9-13<br /> </td> <td>1-9/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-5-9-13<br /> </td> <td>1-11/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-8-9-13<br /> </td> <td>1-14/11-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-2-11-13<br /> </td> <td>1-3/2-7/6-7/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-8-11-13<br /> </td> <td>1-14/11-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-9-11-13<br /> </td> <td>1-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-1-12-13<br /> </td> <td>1-11/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-4-12-13<br /> </td> <td>1-9/8-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-8-12-13<br /> </td> <td>1-14/11-10/7-7/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-9-12-13<br /> </td> <td>1-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-11-12-13<br /> </td> <td>1-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-8-9-20<br /> </td> <td>1-14/11-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-8-11-20<br /> </td> <td>1-14/11-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-9-11-20<br /> </td> <td>1-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-8-12-20<br /> </td> <td>1-14/11-10/7-20/11<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-9-12-20<br /> </td> <td>1-14/9-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-11-12-20<br /> </td> <td>1-7/6-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-1-9-21<br /> </td> <td>1-11/9-14/9-10/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-8-9-21<br /> </td> <td>1-14/11-14/9-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-1-12-21<br /> </td> <td>1-11/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-8-12-21<br /> </td> <td>1-14/11-10/7-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-9-12-21<br /> </td> <td>1-14/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-1-13-21<br /> </td> <td>1-11/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-8-13-21<br /> </td> <td>1-14/11-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-9-13-21<br /> </td> <td>1-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>67<br /> </td> <td>0-12-13-21<br /> </td> <td>1-10/7-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>68<br /> </td> <td>0-8-20-21<br /> </td> <td>1-14/11-20/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>69<br /> </td> <td>0-9-20-21<br /> </td> <td>1-14/9-20/11-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>70<br /> </td> <td>0-12-20-21<br /> </td> <td>1-10/7-20/11-10/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>71<br /> </td> <td>0-2-3-23<br /> </td> <td>1-3/2-11/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>72<br /> </td> <td>0-2-11-23<br /> </td> <td>1-3/2-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>73<br /> </td> <td>0-3-11-23<br /> </td> <td>1-11/6-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>74<br /> </td> <td>0-3-12-23<br /> </td> <td>1-11/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>75<br /> </td> <td>0-11-12-23<br /> </td> <td>1-7/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>76<br /> </td> <td>0-11-20-23<br /> </td> <td>1-7/6-20/11-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>77<br /> </td> <td>0-12-20-23<br /> </td> <td>1-10/7-20/11-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>78<br /> </td> <td>0-12-21-23<br /> </td> <td>1-10/7-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>79<br /> </td> <td>0-20-21-23<br /> </td> <td>1-20/11-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>80<br /> </td> <td>0-2-4-25<br /> </td> <td>1-3/2-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>81<br /> </td> <td>0-2-5-25<br /> </td> <td>1-3/2-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>82<br /> </td> <td>0-4-5-25<br /> </td> <td>1-9/8-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>83<br /> </td> <td>0-4-12-25<br /> </td> <td>1-9/8-10/7-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>84<br /> </td> <td>0-2-13-25<br /> </td> <td>1-3/2-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>85<br /> </td> <td>0-4-13-25<br /> </td> <td>1-9/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>86<br /> </td> <td>0-5-13-25<br /> </td> <td>1-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>87<br /> </td> <td>0-12-13-25<br /> </td> <td>1-10/7-7/4-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>88<br /> </td> <td>0-12-20-25<br /> </td> <td>1-10/7-20/11-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>89<br /> </td> <td>0-12-21-25<br /> </td> <td>1-10/7-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>90<br /> </td> <td>0-13-21-25<br /> </td> <td>1-7/4-10/9-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>91<br /> </td> <td>0-20-21-25<br /> </td> <td>1-20/11-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>92<br /> </td> <td>0-2-23-25<br /> </td> <td>1-3/2-5/3-5/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>93<br /> </td> <td>0-12-23-25<br /> </td> <td>1-10/7-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>94<br /> </td> <td>0-20-23-25<br /> </td> <td>1-20/11-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>95<br /> </td> <td>0-21-23-25<br /> </td> <td>1-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3-4<br /> </td> <td>1-11/9-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-3-5<br /> </td> <td>1-11/9-3/2-11/6-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-2-4-5<br /> </td> <td>1-11/9-3/2-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-3-4-5<br /> </td> <td>1-11/9-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-3-4-5<br /> </td> <td>1-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-4-5-8<br /> </td> <td>1-11/6-9/8-11/8-14/11<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-1-4-5-9<br /> </td> <td>1-11/9-9/8-11/8-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-4-5-8-9<br /> </td> <td>1-9/8-11/8-14/11-14/9<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-3-4-12<br /> </td> <td>1-11/9-11/6-9/8-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-3-4-8-12<br /> </td> <td>1-11/6-9/8-14/11-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-1-4-9-12<br /> </td> <td>1-11/9-9/8-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-4-8-9-12<br /> </td> <td>1-9/8-14/11-14/9-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-3-8-11-12<br /> </td> <td>1-11/6-14/11-7/6-10/7<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-8-9-11-12<br /> </td> <td>1-14/11-14/9-7/6-10/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-1-2-4-13<br /> </td> <td>1-11/9-3/2-9/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-1-2-5-13<br /> </td> <td>1-11/9-3/2-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-1-4-5-13<br /> </td> <td>1-11/9-9/8-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-4-5-13<br /> </td> <td>1-3/2-9/8-11/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-4-5-8-13<br /> </td> <td>1-9/8-11/8-14/11-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-1-4-9-13<br /> </td> <td>1-11/9-9/8-14/9-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-1-5-9-13<br /> </td> <td>1-11/9-11/8-14/9-7/4<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-4-5-9-13<br /> </td> <td>1-9/8-11/8-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-4-8-9-13<br /> </td> <td>1-9/8-14/11-14/9-7/4<br /> </td> <td>pentacircle<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-5-8-9-13<br /> </td> <td>1-11/8-14/11-14/9-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-8-9-11-13<br /> </td> <td>1-14/11-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-1-4-12-13<br /> </td> <td>1-11/9-9/8-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-4-8-12-13<br /> </td> <td>1-9/8-14/11-10/7-7/4<br /> </td> <td>pele<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-1-9-12-13<br /> </td> <td>1-11/9-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-4-9-12-13<br /> </td> <td>1-9/8-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-8-9-12-13<br /> </td> <td>1-14/11-14/9-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-11-12-13<br /> </td> <td>1-14/11-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-9-11-12-13<br /> </td> <td>1-14/9-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-8-9-11-20<br /> </td> <td>1-14/11-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-8-9-12-20<br /> </td> <td>1-14/11-14/9-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-8-11-12-20<br /> </td> <td>1-14/11-7/6-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-9-11-12-20<br /> </td> <td>1-14/9-7/6-10/7-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-1-9-12-21<br /> </td> <td>1-11/9-14/9-10/7-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-8-9-12-21<br /> </td> <td>1-14/11-14/9-10/7-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-1-9-13-21<br /> </td> <td>1-11/9-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-8-9-13-21<br /> </td> <td>1-14/11-14/9-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-1-12-13-21<br /> </td> <td>1-11/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-8-12-13-21<br /> </td> <td>1-14/11-10/7-7/4-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-9-12-13-21<br /> </td> <td>1-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-8-9-20-21<br /> </td> <td>1-14/11-14/9-20/11-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-8-12-20-21<br /> </td> <td>1-14/11-10/7-20/11-10/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-9-12-20-21<br /> </td> <td>1-14/9-10/7-20/11-10/9<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-2-3-11-23<br /> </td> <td>1-3/2-11/6-7/6-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-3-11-12-23<br /> </td> <td>1-11/6-7/6-10/7-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-11-12-20-23<br /> </td> <td>1-7/6-10/7-20/11-5/3<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-12-20-21-23<br /> </td> <td>1-10/7-20/11-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-2-4-5-25<br /> </td> <td>1-3/2-9/8-11/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-2-4-13-25<br /> </td> <td>1-3/2-9/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-2-5-13-25<br /> </td> <td>1-3/2-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-4-5-13-25<br /> </td> <td>1-9/8-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-4-12-13-25<br /> </td> <td>1-9/8-10/7-7/4-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-12-13-21-25<br /> </td> <td>1-10/7-7/4-10/9-5/4<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-12-20-21-25<br /> </td> <td>1-10/7-20/11-10/9-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-12-20-23-25<br /> </td> <td>1-10/7-20/11-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-12-21-23-25<br /> </td> <td>1-10/7-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-20-21-23-25<br /> </td> <td>1-20/11-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3-4-5<br /> </td> <td>1-11/9-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-4-5-13<br /> </td> <td>1-11/9-3/2-9/8-11/8-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-4-5-9-13<br /> </td> <td>1-11/9-9/8-11/8-14/9-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-4-5-8-9-13<br /> </td> <td>1-9/8-11/8-14/11-14/9-7/4<br /> </td> <td>nofives<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-1-4-9-12-13<br /> </td> <td>1-11/9-9/8-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-4-8-9-12-13<br /> </td> <td>1-9/8-14/11-14/9-10/7-7/4<br /> </td> <td>hemififths<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-8-9-11-12-13<br /> </td> <td>1-14/11-14/9-7/6-10/7-7/4<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-8-9-11-12-20<br /> </td> <td>1-14/11-14/9-7/6-10/7-20/11<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-1-9-12-13-21<br /> </td> <td>1-11/9-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-8-9-12-13-21<br /> </td> <td>1-14/11-14/9-10/7-7/4-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-8-9-12-20-21<br /> </td> <td>1-14/11-14/9-10/7-20/11-10/9<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-2-4-5-13-25<br /> </td> <td>1-3/2-9/8-11/8-7/4-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-12-20-21-23-25<br /> </td> <td>1-10/7-20/11-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> </table> </body></html>