|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Breedsmic_temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths". |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 15:02:00 UTC</tt>.<br>
| |
| : The original revision id was <tt>287999812</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".
| |
|
| |
|
| A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords. | | A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords. |
|
| |
|
| =Triads= | | =Triads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2 || 1-11/9-3/2 || rastmic || | | {| class="wikitable" |
| || 2 || 0-1-3 || 1-11/9-11/6 || utonal || | | |- |
| || 3 || 0-2-3 || 1-3/2-11/6 || otonal || | | | | Number |
| || 4 || 0-1-4 || 1-11/9-9/8 || rastmic || | | | | Chord |
| || 5 || 0-2-4 || 1-3/2-9/8 || ambitonal || | | | | Transversal |
| || 6 || 0-3-4 || 1-11/6-9/8 || rastmic || | | | | Type |
| || 7 || 0-1-5 || 1-11/9-11/8 || utonal || | | |- |
| || 8 || 0-2-5 || 1-3/2-11/8 || otonal || | | | | 1 |
| || 9 || 0-3-5 || 1-11/6-11/8 || utonal || | | | | 0-1-2 |
| || 10 || 0-4-5 || 1-9/8-11/8 || otonal || | | | | 1-11/9-3/2 |
| || 11 || 0-3-8 || 1-11/6-14/11 || hemimin || | | | | rastmic |
| || 12 || 0-4-8 || 1-9/8-14/11 || pentacircle || | | |- |
| || 13 || 0-5-8 || 1-11/8-14/11 || hemimin || | | | | 2 |
| || 14 || 0-1-9 || 1-11/9-14/9 || otonal || | | | | 0-1-3 |
| || 15 || 0-4-9 || 1-9/8-14/9 || pentacircle || | | | | 1-11/9-11/6 |
| || 16 || 0-5-9 || 1-11/8-14/9 || pentacircle || | | | | utonal |
| || 17 || 0-8-9 || 1-14/11-14/9 || utonal || | | |- |
| || 18 || 0-2-11 || 1-3/2-7/6 || otonal || | | | | 3 |
| || 19 || 0-3-11 || 1-11/6-7/6 || otonal || | | | | 0-2-3 |
| || 20 || 0-8-11 || 1-14/11-7/6 || utonal || | | | | 1-3/2-11/6 |
| || 21 || 0-9-11 || 1-14/9-7/6 || utonal || | | | | otonal |
| || 22 || 0-1-12 || 1-11/9-10/7 || swetismic || | | |- |
| || 23 || 0-3-12 || 1-11/6-10/7 || swetismic || | | | | 4 |
| || 24 || 0-4-12 || 1-9/8-10/7 || werckismic || | | | | 0-1-4 |
| || 25 || 0-8-12 || 1-14/11-10/7 || werckismic || | | | | 1-11/9-9/8 |
| || 26 || 0-9-12 || 1-14/9-10/7 || swetismic || | | | | rastmic |
| || 27 || 0-11-12 || 1-7/6-10/7 || swetismic || | | |- |
| || 28 || 0-1-13 || 1-11/9-7/4 || werckismic || | | | | 5 |
| || 29 || 0-2-13 || 1-3/2-7/4 || otonal || | | | | 0-2-4 |
| || 30 || 0-4-13 || 1-9/8-7/4 || otonal || | | | | 1-3/2-9/8 |
| || 31 || 0-5-13 || 1-11/8-7/4 || otonal || | | | | ambitonal |
| || 32 || 0-8-13 || 1-14/11-7/4 || utonal || | | |- |
| || 33 || 0-9-13 || 1-14/9-7/4 || utonal || | | | | 6 |
| || 34 || 0-11-13 || 1-7/6-7/4 || utonal || | | | | 0-3-4 |
| || 35 || 0-12-13 || 1-10/7-7/4 || werckismic || | | | | 1-11/6-9/8 |
| || 36 || 0-8-20 || 1-14/11-20/11 || otonal || | | | | rastmic |
| || 37 || 0-9-20 || 1-14/9-20/11 || swetismic || | | |- |
| || 38 || 0-11-20 || 1-7/6-20/11 || swetismic || | | | | 7 |
| || 39 || 0-12-20 || 1-10/7-20/11 || utonal || | | | | 0-1-5 |
| || 40 || 0-1-21 || 1-11/9-10/9 || otonal || | | | | 1-11/9-11/8 |
| || 41 || 0-8-21 || 1-14/11-10/9 || werckismic || | | | | utonal |
| || 42 || 0-9-21 || 1-14/9-10/9 || otonal || | | |- |
| || 43 || 0-12-21 || 1-10/7-10/9 || utonal || | | | | 8 |
| || 44 || 0-13-21 || 1-7/4-10/9 || werckismic || | | | | 0-2-5 |
| || 45 || 0-20-21 || 1-20/11-10/9 || utonal || | | | | 1-3/2-11/8 |
| || 46 || 0-2-23 || 1-3/2-5/3 || otonal || | | | | otonal |
| || 47 || 0-3-23 || 1-11/6-5/3 || otonal || | | |- |
| || 48 || 0-11-23 || 1-7/6-5/3 || otonal || | | | | 9 |
| || 49 || 0-12-23 || 1-10/7-5/3 || utonal || | | | | 0-3-5 |
| || 50 || 0-20-23 || 1-20/11-5/3 || utonal || | | | | 1-11/6-11/8 |
| || 51 || 0-21-23 || 1-10/9-5/3 || utonal || | | | | utonal |
| || 52 || 0-2-25 || 1-3/2-5/4 || otonal || | | |- |
| || 53 || 0-4-25 || 1-9/8-5/4 || otonal || | | | | 10 |
| || 54 || 0-5-25 || 1-11/8-5/4 || otonal || | | | | 0-4-5 |
| || 55 || 0-12-25 || 1-10/7-5/4 || utonal || | | | | 1-9/8-11/8 |
| || 56 || 0-13-25 || 1-7/4-5/4 || otonal || | | | | otonal |
| || 57 || 0-20-25 || 1-20/11-5/4 || utonal || | | |- |
| || 58 || 0-21-25 || 1-10/9-5/4 || utonal || | | | | 11 |
| || 59 || 0-23-25 || 1-5/3-5/4 || utonal || | | | | 0-3-8 |
| | | | 1-11/6-14/11 |
| | | | hemimin |
| | |- |
| | | | 12 |
| | | | 0-4-8 |
| | | | 1-9/8-14/11 |
| | | | pentacircle |
| | |- |
| | | | 13 |
| | | | 0-5-8 |
| | | | 1-11/8-14/11 |
| | | | hemimin |
| | |- |
| | | | 14 |
| | | | 0-1-9 |
| | | | 1-11/9-14/9 |
| | | | otonal |
| | |- |
| | | | 15 |
| | | | 0-4-9 |
| | | | 1-9/8-14/9 |
| | | | pentacircle |
| | |- |
| | | | 16 |
| | | | 0-5-9 |
| | | | 1-11/8-14/9 |
| | | | pentacircle |
| | |- |
| | | | 17 |
| | | | 0-8-9 |
| | | | 1-14/11-14/9 |
| | | | utonal |
| | |- |
| | | | 18 |
| | | | 0-2-11 |
| | | | 1-3/2-7/6 |
| | | | otonal |
| | |- |
| | | | 19 |
| | | | 0-3-11 |
| | | | 1-11/6-7/6 |
| | | | otonal |
| | |- |
| | | | 20 |
| | | | 0-8-11 |
| | | | 1-14/11-7/6 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-9-11 |
| | | | 1-14/9-7/6 |
| | | | utonal |
| | |- |
| | | | 22 |
| | | | 0-1-12 |
| | | | 1-11/9-10/7 |
| | | | swetismic |
| | |- |
| | | | 23 |
| | | | 0-3-12 |
| | | | 1-11/6-10/7 |
| | | | swetismic |
| | |- |
| | | | 24 |
| | | | 0-4-12 |
| | | | 1-9/8-10/7 |
| | | | werckismic |
| | |- |
| | | | 25 |
| | | | 0-8-12 |
| | | | 1-14/11-10/7 |
| | | | werckismic |
| | |- |
| | | | 26 |
| | | | 0-9-12 |
| | | | 1-14/9-10/7 |
| | | | swetismic |
| | |- |
| | | | 27 |
| | | | 0-11-12 |
| | | | 1-7/6-10/7 |
| | | | swetismic |
| | |- |
| | | | 28 |
| | | | 0-1-13 |
| | | | 1-11/9-7/4 |
| | | | werckismic |
| | |- |
| | | | 29 |
| | | | 0-2-13 |
| | | | 1-3/2-7/4 |
| | | | otonal |
| | |- |
| | | | 30 |
| | | | 0-4-13 |
| | | | 1-9/8-7/4 |
| | | | otonal |
| | |- |
| | | | 31 |
| | | | 0-5-13 |
| | | | 1-11/8-7/4 |
| | | | otonal |
| | |- |
| | | | 32 |
| | | | 0-8-13 |
| | | | 1-14/11-7/4 |
| | | | utonal |
| | |- |
| | | | 33 |
| | | | 0-9-13 |
| | | | 1-14/9-7/4 |
| | | | utonal |
| | |- |
| | | | 34 |
| | | | 0-11-13 |
| | | | 1-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 35 |
| | | | 0-12-13 |
| | | | 1-10/7-7/4 |
| | | | werckismic |
| | |- |
| | | | 36 |
| | | | 0-8-20 |
| | | | 1-14/11-20/11 |
| | | | otonal |
| | |- |
| | | | 37 |
| | | | 0-9-20 |
| | | | 1-14/9-20/11 |
| | | | swetismic |
| | |- |
| | | | 38 |
| | | | 0-11-20 |
| | | | 1-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 39 |
| | | | 0-12-20 |
| | | | 1-10/7-20/11 |
| | | | utonal |
| | |- |
| | | | 40 |
| | | | 0-1-21 |
| | | | 1-11/9-10/9 |
| | | | otonal |
| | |- |
| | | | 41 |
| | | | 0-8-21 |
| | | | 1-14/11-10/9 |
| | | | werckismic |
| | |- |
| | | | 42 |
| | | | 0-9-21 |
| | | | 1-14/9-10/9 |
| | | | otonal |
| | |- |
| | | | 43 |
| | | | 0-12-21 |
| | | | 1-10/7-10/9 |
| | | | utonal |
| | |- |
| | | | 44 |
| | | | 0-13-21 |
| | | | 1-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 45 |
| | | | 0-20-21 |
| | | | 1-20/11-10/9 |
| | | | utonal |
| | |- |
| | | | 46 |
| | | | 0-2-23 |
| | | | 1-3/2-5/3 |
| | | | otonal |
| | |- |
| | | | 47 |
| | | | 0-3-23 |
| | | | 1-11/6-5/3 |
| | | | otonal |
| | |- |
| | | | 48 |
| | | | 0-11-23 |
| | | | 1-7/6-5/3 |
| | | | otonal |
| | |- |
| | | | 49 |
| | | | 0-12-23 |
| | | | 1-10/7-5/3 |
| | | | utonal |
| | |- |
| | | | 50 |
| | | | 0-20-23 |
| | | | 1-20/11-5/3 |
| | | | utonal |
| | |- |
| | | | 51 |
| | | | 0-21-23 |
| | | | 1-10/9-5/3 |
| | | | utonal |
| | |- |
| | | | 52 |
| | | | 0-2-25 |
| | | | 1-3/2-5/4 |
| | | | otonal |
| | |- |
| | | | 53 |
| | | | 0-4-25 |
| | | | 1-9/8-5/4 |
| | | | otonal |
| | |- |
| | | | 54 |
| | | | 0-5-25 |
| | | | 1-11/8-5/4 |
| | | | otonal |
| | |- |
| | | | 55 |
| | | | 0-12-25 |
| | | | 1-10/7-5/4 |
| | | | utonal |
| | |- |
| | | | 56 |
| | | | 0-13-25 |
| | | | 1-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 57 |
| | | | 0-20-25 |
| | | | 1-20/11-5/4 |
| | | | utonal |
| | |- |
| | | | 58 |
| | | | 0-21-25 |
| | | | 1-10/9-5/4 |
| | | | utonal |
| | |- |
| | | | 59 |
| | | | 0-23-25 |
| | | | 1-5/3-5/4 |
| | | | utonal |
| | |} |
|
| |
|
| =Tetrads= | | =Tetrads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic || | | {| class="wikitable" |
| || 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic || | | |- |
| || 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic || | | | | Number |
| || 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic || | | | | Chord |
| || 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic || | | | | Transversal |
| || 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal || | | | | Type |
| || 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal || | | |- |
| || 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic || | | | | 1 |
| || 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal || | | | | 0-1-2-3 |
| || 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic || | | | | 1-11/9-3/2-11/6 |
| || 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives || | | | | rastmic |
| || 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin || | | |- |
| || 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives || | | | | 2 |
| || 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives || | | | | 0-1-2-4 |
| || 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle || | | | | 1-11/9-3/2-9/8 |
| || 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle || | | | | rastmic |
| || 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle || | | |- |
| || 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives || | | | | 3 |
| || 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal || | | | | 0-1-3-4 |
| || 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin || | | | | 1-11/9-11/6-9/8 |
| || 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal || | | | | rastmic |
| || 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic || | | |- |
| || 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove || | | | | 4 |
| || 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove || | | | | 0-2-3-4 |
| || 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths || | | | | 1-3/2-11/6-9/8 |
| || 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele || | | | | rastmic |
| || 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic || | | |- |
| || 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths || | | | | 5 |
| || 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove || | | | | 0-1-2-5 |
| || 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic || | | | | 1-11/9-3/2-11/8 |
| || 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove || | | | | rastmic |
| || 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic || | | |- |
| || 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove || | | | | 6 |
| || 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove || | | | | 0-1-3-5 |
| || 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal || | | | | 1-11/9-11/6-11/8 |
| || 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic || | | | | utonal |
| || 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal || | | |- |
| || 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal || | | | | 7 |
| || 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle || | | | | 0-2-3-5 |
| || 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin || | | | | 1-3/2-11/6-11/8 |
| || 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic || | | | | ambitonal |
| || 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle || | | |- |
| || 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle || | | | | 8 |
| || 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal || | | | | 0-1-4-5 |
| || 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal || | | | | 1-11/9-9/8-11/8 |
| || 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal || | | | | rastmic |
| || 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal || | | |- |
| || 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove || | | | | 9 |
| || 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic || | | | | 0-2-4-5 |
| || 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic || | | | | 1-3/2-9/8-11/8 |
| || 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove || | | | | otonal |
| || 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove || | | |- |
| || 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic || | | | | 10 |
| || 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic || | | | | 0-3-4-5 |
| || 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic || | | | | 1-11/6-9/8-11/8 |
| || 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic || | | | | rastmic |
| || 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic || | | |- |
| || 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic || | | | | 11 |
| || 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal || | | | | 0-3-4-8 |
| || 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic || | | | | 1-11/6-9/8-14/11 |
| || 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic || | | | | nofives |
| || 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic || | | |- |
| || 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic || | | | | 12 |
| || 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic || | | | | 0-3-5-8 |
| || 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic || | | | | 1-11/6-11/8-14/11 |
| || 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic || | | | | hemimin |
| || 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic || | | |- |
| || 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic || | | | | 13 |
| || 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic || | | | | 0-4-5-8 |
| || 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal || | | | | 1-9/8-11/8-14/11 |
| || 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal || | | | | nofives |
| || 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal || | | |- |
| || 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal || | | | | 14 |
| || 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic || | | | | 0-1-4-9 |
| || 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic || | | | | 1-11/9-9/8-14/9 |
| || 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic || | | | | nofives |
| || 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal || | | |- |
| || 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal || | | | | 15 |
| || 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal || | | | | 0-1-5-9 |
| || 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal || | | | | 1-11/9-11/8-14/9 |
| || 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal || | | | | pentacircle |
| || 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal || | | |- |
| || 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic || | | | | 16 |
| || 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal || | | | | 0-4-5-9 |
| || 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal || | | | | 1-9/8-11/8-14/9 |
| || 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal || | | | | pentacircle |
| || 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic || | | |- |
| || 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal || | | | | 17 |
| || 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal || | | | | 0-4-8-9 |
| || 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic || | | | | 1-9/8-14/11-14/9 |
| || 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal || | | | | pentacircle |
| || 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal || | | |- |
| || 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal || | | | | 18 |
| || 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal || | | | | 0-5-8-9 |
| || 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal || | | | | 1-11/8-14/11-14/9 |
| | | | nofives |
| | |- |
| | | | 19 |
| | | | 0-2-3-11 |
| | | | 1-3/2-11/6-7/6 |
| | | | otonal |
| | |- |
| | | | 20 |
| | | | 0-3-8-11 |
| | | | 1-11/6-14/11-7/6 |
| | | | hemimin |
| | |- |
| | | | 21 |
| | | | 0-8-9-11 |
| | | | 1-14/11-14/9-7/6 |
| | | | utonal |
| | |- |
| | | | 22 |
| | | | 0-1-3-12 |
| | | | 1-11/9-11/6-10/7 |
| | | | swetismic |
| | |- |
| | | | 23 |
| | | | 0-1-4-12 |
| | | | 1-11/9-9/8-10/7 |
| | | | jove |
| | |- |
| | | | 24 |
| | | | 0-3-4-12 |
| | | | 1-11/6-9/8-10/7 |
| | | | jove |
| | |- |
| | | | 25 |
| | | | 0-3-8-12 |
| | | | 1-11/6-14/11-10/7 |
| | | | hemififths |
| | |- |
| | | | 26 |
| | | | 0-4-8-12 |
| | | | 1-9/8-14/11-10/7 |
| | | | pele |
| | |- |
| | | | 27 |
| | | | 0-1-9-12 |
| | | | 1-11/9-14/9-10/7 |
| | | | swetismic |
| | |- |
| | | | 28 |
| | | | 0-4-9-12 |
| | | | 1-9/8-14/9-10/7 |
| | | | hemififths |
| | |- |
| | | | 29 |
| | | | 0-8-9-12 |
| | | | 1-14/11-14/9-10/7 |
| | | | jove |
| | |- |
| | | | 30 |
| | | | 0-3-11-12 |
| | | | 1-11/6-7/6-10/7 |
| | | | swetismic |
| | |- |
| | | | 31 |
| | | | 0-8-11-12 |
| | | | 1-14/11-7/6-10/7 |
| | | | jove |
| | |- |
| | | | 32 |
| | | | 0-9-11-12 |
| | | | 1-14/9-7/6-10/7 |
| | | | swetismic |
| | |- |
| | | | 33 |
| | | | 0-1-2-13 |
| | | | 1-11/9-3/2-7/4 |
| | | | jove |
| | |- |
| | | | 34 |
| | | | 0-1-4-13 |
| | | | 1-11/9-9/8-7/4 |
| | | | jove |
| | |- |
| | | | 35 |
| | | | 0-2-4-13 |
| | | | 1-3/2-9/8-7/4 |
| | | | otonal |
| | |- |
| | | | 36 |
| | | | 0-1-5-13 |
| | | | 1-11/9-11/8-7/4 |
| | | | werckismic |
| | |- |
| | | | 37 |
| | | | 0-2-5-13 |
| | | | 1-3/2-11/8-7/4 |
| | | | otonal |
| | |- |
| | | | 38 |
| | | | 0-4-5-13 |
| | | | 1-9/8-11/8-7/4 |
| | | | otonal |
| | |- |
| | | | 39 |
| | | | 0-4-8-13 |
| | | | 1-9/8-14/11-7/4 |
| | | | pentacircle |
| | |- |
| | | | 40 |
| | | | 0-5-8-13 |
| | | | 1-11/8-14/11-7/4 |
| | | | hemimin |
| | |- |
| | | | 41 |
| | | | 0-1-9-13 |
| | | | 1-11/9-14/9-7/4 |
| | | | werckismic |
| | |- |
| | | | 42 |
| | | | 0-4-9-13 |
| | | | 1-9/8-14/9-7/4 |
| | | | pentacircle |
| | |- |
| | | | 43 |
| | | | 0-5-9-13 |
| | | | 1-11/8-14/9-7/4 |
| | | | pentacircle |
| | |- |
| | | | 44 |
| | | | 0-8-9-13 |
| | | | 1-14/11-14/9-7/4 |
| | | | utonal |
| | |- |
| | | | 45 |
| | | | 0-2-11-13 |
| | | | 1-3/2-7/6-7/4 |
| | | | ambitonal |
| | |- |
| | | | 46 |
| | | | 0-8-11-13 |
| | | | 1-14/11-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 47 |
| | | | 0-9-11-13 |
| | | | 1-14/9-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 48 |
| | | | 0-1-12-13 |
| | | | 1-11/9-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 49 |
| | | | 0-4-12-13 |
| | | | 1-9/8-10/7-7/4 |
| | | | werckismic |
| | |- |
| | | | 50 |
| | | | 0-8-12-13 |
| | | | 1-14/11-10/7-7/4 |
| | | | werckismic |
| | |- |
| | | | 51 |
| | | | 0-9-12-13 |
| | | | 1-14/9-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 52 |
| | | | 0-11-12-13 |
| | | | 1-7/6-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 53 |
| | | | 0-8-9-20 |
| | | | 1-14/11-14/9-20/11 |
| | | | swetismic |
| | |- |
| | | | 54 |
| | | | 0-8-11-20 |
| | | | 1-14/11-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 55 |
| | | | 0-9-11-20 |
| | | | 1-14/9-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 56 |
| | | | 0-8-12-20 |
| | | | 1-14/11-10/7-20/11 |
| | | | werckismic |
| | |- |
| | | | 57 |
| | | | 0-9-12-20 |
| | | | 1-14/9-10/7-20/11 |
| | | | swetismic |
| | |- |
| | | | 58 |
| | | | 0-11-12-20 |
| | | | 1-7/6-10/7-20/11 |
| | | | swetismic |
| | |- |
| | | | 59 |
| | | | 0-1-9-21 |
| | | | 1-11/9-14/9-10/9 |
| | | | otonal |
| | |- |
| | | | 60 |
| | | | 0-8-9-21 |
| | | | 1-14/11-14/9-10/9 |
| | | | werckismic |
| | |- |
| | | | 61 |
| | | | 0-1-12-21 |
| | | | 1-11/9-10/7-10/9 |
| | | | swetismic |
| | |- |
| | | | 62 |
| | | | 0-8-12-21 |
| | | | 1-14/11-10/7-10/9 |
| | | | werckismic |
| | |- |
| | | | 63 |
| | | | 0-9-12-21 |
| | | | 1-14/9-10/7-10/9 |
| | | | swetismic |
| | |- |
| | | | 64 |
| | | | 0-1-13-21 |
| | | | 1-11/9-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 65 |
| | | | 0-8-13-21 |
| | | | 1-14/11-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 66 |
| | | | 0-9-13-21 |
| | | | 1-14/9-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 67 |
| | | | 0-12-13-21 |
| | | | 1-10/7-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 68 |
| | | | 0-8-20-21 |
| | | | 1-14/11-20/11-10/9 |
| | | | werckismic |
| | |- |
| | | | 69 |
| | | | 0-9-20-21 |
| | | | 1-14/9-20/11-10/9 |
| | | | swetismic |
| | |- |
| | | | 70 |
| | | | 0-12-20-21 |
| | | | 1-10/7-20/11-10/9 |
| | | | utonal |
| | |- |
| | | | 71 |
| | | | 0-2-3-23 |
| | | | 1-3/2-11/6-5/3 |
| | | | otonal |
| | |- |
| | | | 72 |
| | | | 0-2-11-23 |
| | | | 1-3/2-7/6-5/3 |
| | | | otonal |
| | |- |
| | | | 73 |
| | | | 0-3-11-23 |
| | | | 1-11/6-7/6-5/3 |
| | | | otonal |
| | |- |
| | | | 74 |
| | | | 0-3-12-23 |
| | | | 1-11/6-10/7-5/3 |
| | | | swetismic |
| | |- |
| | | | 75 |
| | | | 0-11-12-23 |
| | | | 1-7/6-10/7-5/3 |
| | | | swetismic |
| | |- |
| | | | 76 |
| | | | 0-11-20-23 |
| | | | 1-7/6-20/11-5/3 |
| | | | swetismic |
| | |- |
| | | | 77 |
| | | | 0-12-20-23 |
| | | | 1-10/7-20/11-5/3 |
| | | | utonal |
| | |- |
| | | | 78 |
| | | | 0-12-21-23 |
| | | | 1-10/7-10/9-5/3 |
| | | | utonal |
| | |- |
| | | | 79 |
| | | | 0-20-21-23 |
| | | | 1-20/11-10/9-5/3 |
| | | | utonal |
| | |- |
| | | | 80 |
| | | | 0-2-4-25 |
| | | | 1-3/2-9/8-5/4 |
| | | | otonal |
| | |- |
| | | | 81 |
| | | | 0-2-5-25 |
| | | | 1-3/2-11/8-5/4 |
| | | | otonal |
| | |- |
| | | | 82 |
| | | | 0-4-5-25 |
| | | | 1-9/8-11/8-5/4 |
| | | | otonal |
| | |- |
| | | | 83 |
| | | | 0-4-12-25 |
| | | | 1-9/8-10/7-5/4 |
| | | | werckismic |
| | |- |
| | | | 84 |
| | | | 0-2-13-25 |
| | | | 1-3/2-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 85 |
| | | | 0-4-13-25 |
| | | | 1-9/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 86 |
| | | | 0-5-13-25 |
| | | | 1-11/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 87 |
| | | | 0-12-13-25 |
| | | | 1-10/7-7/4-5/4 |
| | | | werckismic |
| | |- |
| | | | 88 |
| | | | 0-12-20-25 |
| | | | 1-10/7-20/11-5/4 |
| | | | utonal |
| | |- |
| | | | 89 |
| | | | 0-12-21-25 |
| | | | 1-10/7-10/9-5/4 |
| | | | utonal |
| | |- |
| | | | 90 |
| | | | 0-13-21-25 |
| | | | 1-7/4-10/9-5/4 |
| | | | werckismic |
| | |- |
| | | | 91 |
| | | | 0-20-21-25 |
| | | | 1-20/11-10/9-5/4 |
| | | | utonal |
| | |- |
| | | | 92 |
| | | | 0-2-23-25 |
| | | | 1-3/2-5/3-5/4 |
| | | | ambitonal |
| | |- |
| | | | 93 |
| | | | 0-12-23-25 |
| | | | 1-10/7-5/3-5/4 |
| | | | utonal |
| | |- |
| | | | 94 |
| | | | 0-20-23-25 |
| | | | 1-20/11-5/3-5/4 |
| | | | utonal |
| | |- |
| | | | 95 |
| | | | 0-21-23-25 |
| | | | 1-10/9-5/3-5/4 |
| | | | utonal |
| | |} |
|
| |
|
| =Pentads= | | =Pentads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic || | | {| class="wikitable" |
| || 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic || | | |- |
| || 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic || | | | | Number |
| || 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic || | | | | Chord |
| || 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic || | | | | Transversal |
| || 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives || | | | | Type |
| || 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives || | | |- |
| || 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives || | | | | 1 |
| || 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove || | | | | 0-1-2-3-4 |
| || 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths || | | | | 1-11/9-3/2-11/6-9/8 |
| || 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths || | | | | rastmic |
| || 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths || | | |- |
| || 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths || | | | | 2 |
| || 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove || | | | | 0-1-2-3-5 |
| || 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove || | | | | 1-11/9-3/2-11/6-11/8 |
| || 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove || | | | | rastmic |
| || 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove || | | |- |
| || 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal || | | | | 3 |
| || 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives || | | | | 0-1-2-4-5 |
| || 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths || | | | | 1-11/9-3/2-9/8-11/8 |
| || 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele || | | | | rastmic |
| || 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle || | | |- |
| || 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle || | | | | 4 |
| || 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives || | | | | 0-1-3-4-5 |
| || 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal || | | | | 1-11/9-11/6-9/8-11/8 |
| || 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove || | | | | rastmic |
| || 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele || | | |- |
| || 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove || | | | | 5 |
| || 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths || | | | | 0-2-3-4-5 |
| || 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove || | | | | 1-3/2-11/6-9/8-11/8 |
| || 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove || | | | | rastmic |
| || 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove || | | |- |
| || 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic || | | | | 6 |
| || 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove || | | | | 0-3-4-5-8 |
| || 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove || | | | | 1-11/6-9/8-11/8-14/11 |
| || 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic || | | | | nofives |
| || 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic || | | |- |
| || 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove || | | | | 7 |
| || 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic || | | | | 0-1-4-5-9 |
| || 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic || | | | | 1-11/9-9/8-11/8-14/9 |
| || 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove || | | | | nofives |
| || 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic || | | |- |
| || 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove || | | | | 8 |
| || 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove || | | | | 0-4-5-8-9 |
| || 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic || | | | | 1-9/8-11/8-14/11-14/9 |
| || 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic || | | | | nofives |
| || 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal || | | |- |
| || 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic || | | | | 9 |
| || 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic || | | | | 0-1-3-4-12 |
| || 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal || | | | | 1-11/9-11/6-9/8-10/7 |
| || 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal || | | | | jove |
| || 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal || | | |- |
| || 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal || | | | | 10 |
| || 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal || | | | | 0-3-4-8-12 |
| || 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic || | | | | 1-11/6-9/8-14/11-10/7 |
| || 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic || | | | | hemififths |
| || 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal || | | |- |
| || 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal || | | | | 11 |
| || 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal || | | | | 0-1-4-9-12 |
| || 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal || | | | | 1-11/9-9/8-14/9-10/7 |
| | | | hemififths |
| | |- |
| | | | 12 |
| | | | 0-4-8-9-12 |
| | | | 1-9/8-14/11-14/9-10/7 |
| | | | hemififths |
| | |- |
| | | | 13 |
| | | | 0-3-8-11-12 |
| | | | 1-11/6-14/11-7/6-10/7 |
| | | | hemififths |
| | |- |
| | | | 14 |
| | | | 0-8-9-11-12 |
| | | | 1-14/11-14/9-7/6-10/7 |
| | | | jove |
| | |- |
| | | | 15 |
| | | | 0-1-2-4-13 |
| | | | 1-11/9-3/2-9/8-7/4 |
| | | | jove |
| | |- |
| | | | 16 |
| | | | 0-1-2-5-13 |
| | | | 1-11/9-3/2-11/8-7/4 |
| | | | jove |
| | |- |
| | | | 17 |
| | | | 0-1-4-5-13 |
| | | | 1-11/9-9/8-11/8-7/4 |
| | | | jove |
| | |- |
| | | | 18 |
| | | | 0-2-4-5-13 |
| | | | 1-3/2-9/8-11/8-7/4 |
| | | | otonal |
| | |- |
| | | | 19 |
| | | | 0-4-5-8-13 |
| | | | 1-9/8-11/8-14/11-7/4 |
| | | | nofives |
| | |- |
| | | | 20 |
| | | | 0-1-4-9-13 |
| | | | 1-11/9-9/8-14/9-7/4 |
| | | | hemififths |
| | |- |
| | | | 21 |
| | | | 0-1-5-9-13 |
| | | | 1-11/9-11/8-14/9-7/4 |
| | | | pele |
| | |- |
| | | | 22 |
| | | | 0-4-5-9-13 |
| | | | 1-9/8-11/8-14/9-7/4 |
| | | | pentacircle |
| | |- |
| | | | 23 |
| | | | 0-4-8-9-13 |
| | | | 1-9/8-14/11-14/9-7/4 |
| | | | pentacircle |
| | |- |
| | | | 24 |
| | | | 0-5-8-9-13 |
| | | | 1-11/8-14/11-14/9-7/4 |
| | | | nofives |
| | |- |
| | | | 25 |
| | | | 0-8-9-11-13 |
| | | | 1-14/11-14/9-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 26 |
| | | | 0-1-4-12-13 |
| | | | 1-11/9-9/8-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 27 |
| | | | 0-4-8-12-13 |
| | | | 1-9/8-14/11-10/7-7/4 |
| | | | pele |
| | |- |
| | | | 28 |
| | | | 0-1-9-12-13 |
| | | | 1-11/9-14/9-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 29 |
| | | | 0-4-9-12-13 |
| | | | 1-9/8-14/9-10/7-7/4 |
| | | | hemififths |
| | |- |
| | | | 30 |
| | | | 0-8-9-12-13 |
| | | | 1-14/11-14/9-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 31 |
| | | | 0-8-11-12-13 |
| | | | 1-14/11-7/6-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 32 |
| | | | 0-9-11-12-13 |
| | | | 1-14/9-7/6-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 33 |
| | | | 0-8-9-11-20 |
| | | | 1-14/11-14/9-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 34 |
| | | | 0-8-9-12-20 |
| | | | 1-14/11-14/9-10/7-20/11 |
| | | | jove |
| | |- |
| | | | 35 |
| | | | 0-8-11-12-20 |
| | | | 1-14/11-7/6-10/7-20/11 |
| | | | jove |
| | |- |
| | | | 36 |
| | | | 0-9-11-12-20 |
| | | | 1-14/9-7/6-10/7-20/11 |
| | | | swetismic |
| | |- |
| | | | 37 |
| | | | 0-1-9-12-21 |
| | | | 1-11/9-14/9-10/7-10/9 |
| | | | swetismic |
| | |- |
| | | | 38 |
| | | | 0-8-9-12-21 |
| | | | 1-14/11-14/9-10/7-10/9 |
| | | | jove |
| | |- |
| | | | 39 |
| | | | 0-1-9-13-21 |
| | | | 1-11/9-14/9-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 40 |
| | | | 0-8-9-13-21 |
| | | | 1-14/11-14/9-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 41 |
| | | | 0-1-12-13-21 |
| | | | 1-11/9-10/7-7/4-10/9 |
| | | | jove |
| | |- |
| | | | 42 |
| | | | 0-8-12-13-21 |
| | | | 1-14/11-10/7-7/4-10/9 |
| | | | werckismic |
| | |- |
| | | | 43 |
| | | | 0-9-12-13-21 |
| | | | 1-14/9-10/7-7/4-10/9 |
| | | | jove |
| | |- |
| | | | 44 |
| | | | 0-8-9-20-21 |
| | | | 1-14/11-14/9-20/11-10/9 |
| | | | jove |
| | |- |
| | | | 45 |
| | | | 0-8-12-20-21 |
| | | | 1-14/11-10/7-20/11-10/9 |
| | | | werckismic |
| | |- |
| | | | 46 |
| | | | 0-9-12-20-21 |
| | | | 1-14/9-10/7-20/11-10/9 |
| | | | swetismic |
| | |- |
| | | | 47 |
| | | | 0-2-3-11-23 |
| | | | 1-3/2-11/6-7/6-5/3 |
| | | | otonal |
| | |- |
| | | | 48 |
| | | | 0-3-11-12-23 |
| | | | 1-11/6-7/6-10/7-5/3 |
| | | | swetismic |
| | |- |
| | | | 49 |
| | | | 0-11-12-20-23 |
| | | | 1-7/6-10/7-20/11-5/3 |
| | | | swetismic |
| | |- |
| | | | 50 |
| | | | 0-12-20-21-23 |
| | | | 1-10/7-20/11-10/9-5/3 |
| | | | utonal |
| | |- |
| | | | 51 |
| | | | 0-2-4-5-25 |
| | | | 1-3/2-9/8-11/8-5/4 |
| | | | otonal |
| | |- |
| | | | 52 |
| | | | 0-2-4-13-25 |
| | | | 1-3/2-9/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 53 |
| | | | 0-2-5-13-25 |
| | | | 1-3/2-11/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 54 |
| | | | 0-4-5-13-25 |
| | | | 1-9/8-11/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 55 |
| | | | 0-4-12-13-25 |
| | | | 1-9/8-10/7-7/4-5/4 |
| | | | werckismic |
| | |- |
| | | | 56 |
| | | | 0-12-13-21-25 |
| | | | 1-10/7-7/4-10/9-5/4 |
| | | | werckismic |
| | |- |
| | | | 57 |
| | | | 0-12-20-21-25 |
| | | | 1-10/7-20/11-10/9-5/4 |
| | | | utonal |
| | |- |
| | | | 58 |
| | | | 0-12-20-23-25 |
| | | | 1-10/7-20/11-5/3-5/4 |
| | | | utonal |
| | |- |
| | | | 59 |
| | | | 0-12-21-23-25 |
| | | | 1-10/7-10/9-5/3-5/4 |
| | | | utonal |
| | |- |
| | | | 60 |
| | | | 0-20-21-23-25 |
| | | | 1-20/11-10/9-5/3-5/4 |
| | | | utonal |
| | |} |
|
| |
|
| =Hexads= | | =Hexads= |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic ||
| |
| || 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove ||
| |
| || 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths ||
| |
| || 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives ||
| |
| || 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths ||
| |
| || 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths ||
| |
| || 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove ||
| |
| || 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove ||
| |
| || 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove ||
| |
| || 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove ||
| |
| || 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove ||
| |
| || 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal ||
| |
| || 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of hemififths</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths">hemififths temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &quot;nofives&quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &quot;Nofives&quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &quot;hemififths&quot;.<br />
| |
| <br />
| |
| A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2<br />
| |
| </td>
| |
| <td>1-11/9-3/2<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-3<br />
| |
| </td>
| |
| <td>1-11/9-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-3<br />
| |
| </td>
| |
| <td>1-3/2-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-1-4<br />
| |
| </td>
| |
| <td>1-11/9-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-4<br />
| |
| </td>
| |
| <td>1-3/2-9/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-4<br />
| |
| </td>
| |
| <td>1-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-1-5<br />
| |
| </td>
| |
| <td>1-11/9-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-2-5<br />
| |
| </td>
| |
| <td>1-3/2-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-3-5<br />
| |
| </td>
| |
| <td>1-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-4-5<br />
| |
| </td>
| |
| <td>1-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-3-8<br />
| |
| </td>
| |
| <td>1-11/6-14/11<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-4-8<br />
| |
| </td>
| |
| <td>1-9/8-14/11<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-5-8<br />
| |
| </td>
| |
| <td>1-11/8-14/11<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-1-9<br />
| |
| </td>
| |
| <td>1-11/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-4-9<br />
| |
| </td>
| |
| <td>1-9/8-14/9<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-5-9<br />
| |
| </td>
| |
| <td>1-11/8-14/9<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-8-9<br />
| |
| </td>
| |
| <td>1-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-2-11<br />
| |
| </td>
| |
| <td>1-3/2-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-3-11<br />
| |
| </td>
| |
| <td>1-11/6-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-8-11<br />
| |
| </td>
| |
| <td>1-14/11-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-9-11<br />
| |
| </td>
| |
| <td>1-14/9-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-1-12<br />
| |
| </td>
| |
| <td>1-11/9-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-3-12<br />
| |
| </td>
| |
| <td>1-11/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-4-12<br />
| |
| </td>
| |
| <td>1-9/8-10/7<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-8-12<br />
| |
| </td>
| |
| <td>1-14/11-10/7<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-9-12<br />
| |
| </td>
| |
| <td>1-14/9-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-11-12<br />
| |
| </td>
| |
| <td>1-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-1-13<br />
| |
| </td>
| |
| <td>1-11/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-2-13<br />
| |
| </td>
| |
| <td>1-3/2-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-4-13<br />
| |
| </td>
| |
| <td>1-9/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-5-13<br />
| |
| </td>
| |
| <td>1-11/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-8-13<br />
| |
| </td>
| |
| <td>1-14/11-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-9-13<br />
| |
| </td>
| |
| <td>1-14/9-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-11-13<br />
| |
| </td>
| |
| <td>1-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-12-13<br />
| |
| </td>
| |
| <td>1-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-8-20<br />
| |
| </td>
| |
| <td>1-14/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-9-20<br />
| |
| </td>
| |
| <td>1-14/9-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-11-20<br />
| |
| </td>
| |
| <td>1-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-12-20<br />
| |
| </td>
| |
| <td>1-10/7-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-1-21<br />
| |
| </td>
| |
| <td>1-11/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-8-21<br />
| |
| </td>
| |
| <td>1-14/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-9-21<br />
| |
| </td>
| |
| <td>1-14/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-12-21<br />
| |
| </td>
| |
| <td>1-10/7-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-13-21<br />
| |
| </td>
| |
| <td>1-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-20-21<br />
| |
| </td>
| |
| <td>1-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-2-23<br />
| |
| </td>
| |
| <td>1-3/2-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-3-23<br />
| |
| </td>
| |
| <td>1-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-11-23<br />
| |
| </td>
| |
| <td>1-7/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-12-23<br />
| |
| </td>
| |
| <td>1-10/7-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-20-23<br />
| |
| </td>
| |
| <td>1-20/11-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-21-23<br />
| |
| </td>
| |
| <td>1-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-2-25<br />
| |
| </td>
| |
| <td>1-3/2-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-4-25<br />
| |
| </td>
| |
| <td>1-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-5-25<br />
| |
| </td>
| |
| <td>1-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-12-25<br />
| |
| </td>
| |
| <td>1-10/7-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-13-25<br />
| |
| </td>
| |
| <td>1-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-20-25<br />
| |
| </td>
| |
| <td>1-20/11-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-21-25<br />
| |
| </td>
| |
| <td>1-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-23-25<br />
| |
| </td>
| |
| <td>1-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2-3<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-2-4<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-1-3-4<br />
| |
| </td>
| |
| <td>1-11/9-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-3-4<br />
| |
| </td>
| |
| <td>1-3/2-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-1-2-5<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-1-3-5<br />
| |
| </td>
| |
| <td>1-11/9-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-2-3-5<br />
| |
| </td>
| |
| <td>1-3/2-11/6-11/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-1-4-5<br />
| |
| </td>
| |
| <td>1-11/9-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-4-5<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-3-4-5<br />
| |
| </td>
| |
| <td>1-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-3-4-8<br />
| |
| </td>
| |
| <td>1-11/6-9/8-14/11<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-3-5-8<br />
| |
| </td>
| |
| <td>1-11/6-11/8-14/11<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-5-8<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/11<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-1-4-9<br />
| |
| </td>
| |
| <td>1-11/9-9/8-14/9<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-1-5-9<br />
| |
| </td>
| |
| <td>1-11/9-11/8-14/9<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-4-5-9<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/9<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-4-8-9<br />
| |
| </td>
| |
| <td>1-9/8-14/11-14/9<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-5-8-9<br />
| |
| </td>
| |
| <td>1-11/8-14/11-14/9<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-2-3-11<br />
| |
| </td>
| |
| <td>1-3/2-11/6-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-3-8-11<br />
| |
| </td>
| |
| <td>1-11/6-14/11-7/6<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-8-9-11<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-1-3-12<br />
| |
| </td>
| |
| <td>1-11/9-11/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-1-4-12<br />
| |
| </td>
| |
| <td>1-11/9-9/8-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-3-4-12<br />
| |
| </td>
| |
| <td>1-11/6-9/8-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-3-8-12<br />
| |
| </td>
| |
| <td>1-11/6-14/11-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-4-8-12<br />
| |
| </td>
| |
| <td>1-9/8-14/11-10/7<br />
| |
| </td>
| |
| <td>pele<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-1-9-12<br />
| |
| </td>
| |
| <td>1-11/9-14/9-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-4-9-12<br />
| |
| </td>
| |
| <td>1-9/8-14/9-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-8-9-12<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-3-11-12<br />
| |
| </td>
| |
| <td>1-11/6-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-8-11-12<br />
| |
| </td>
| |
| <td>1-14/11-7/6-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-9-11-12<br />
| |
| </td>
| |
| <td>1-14/9-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-1-2-13<br />
| |
| </td>
| |
| <td>1-11/9-3/2-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-1-4-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-2-4-13<br />
| |
| </td>
| |
| <td>1-3/2-9/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-1-5-13<br />
| |
| </td>
| |
| <td>1-11/9-11/8-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-2-5-13<br />
| |
| </td>
| |
| <td>1-3/2-11/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-4-5-13<br />
| |
| </td>
| |
| <td>1-9/8-11/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-4-8-13<br />
| |
| </td>
| |
| <td>1-9/8-14/11-7/4<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-5-8-13<br />
| |
| </td>
| |
| <td>1-11/8-14/11-7/4<br />
| |
| </td>
| |
| <td>hemimin<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-1-9-13<br />
| |
| </td>
| |
| <td>1-11/9-14/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-4-9-13<br />
| |
| </td>
| |
| <td>1-9/8-14/9-7/4<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-5-9-13<br />
| |
| </td>
| |
| <td>1-11/8-14/9-7/4<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-8-9-13<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-2-11-13<br />
| |
| </td>
| |
| <td>1-3/2-7/6-7/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-8-11-13<br />
| |
| </td>
| |
| <td>1-14/11-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-9-11-13<br />
| |
| </td>
| |
| <td>1-14/9-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-1-12-13<br />
| |
| </td>
| |
| <td>1-11/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-4-12-13<br />
| |
| </td>
| |
| <td>1-9/8-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-8-12-13<br />
| |
| </td>
| |
| <td>1-14/11-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-9-12-13<br />
| |
| </td>
| |
| <td>1-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-11-12-13<br />
| |
| </td>
| |
| <td>1-7/6-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-8-9-20<br />
| |
| </td>
| |
| <td>1-14/11-14/9-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-8-11-20<br />
| |
| </td>
| |
| <td>1-14/11-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-9-11-20<br />
| |
| </td>
| |
| <td>1-14/9-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-8-12-20<br />
| |
| </td>
| |
| <td>1-14/11-10/7-20/11<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-9-12-20<br />
| |
| </td>
| |
| <td>1-14/9-10/7-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-11-12-20<br />
| |
| </td>
| |
| <td>1-7/6-10/7-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-1-9-21<br />
| |
| </td>
| |
| <td>1-11/9-14/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-8-9-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-1-12-21<br />
| |
| </td>
| |
| <td>1-11/9-10/7-10/9<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-8-12-21<br />
| |
| </td>
| |
| <td>1-14/11-10/7-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-9-12-21<br />
| |
| </td>
| |
| <td>1-14/9-10/7-10/9<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>0-1-13-21<br />
| |
| </td>
| |
| <td>1-11/9-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>0-8-13-21<br />
| |
| </td>
| |
| <td>1-14/11-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>0-9-13-21<br />
| |
| </td>
| |
| <td>1-14/9-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>0-12-13-21<br />
| |
| </td>
| |
| <td>1-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>0-8-20-21<br />
| |
| </td>
| |
| <td>1-14/11-20/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>0-9-20-21<br />
| |
| </td>
| |
| <td>1-14/9-20/11-10/9<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>0-12-20-21<br />
| |
| </td>
| |
| <td>1-10/7-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>0-2-3-23<br />
| |
| </td>
| |
| <td>1-3/2-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>0-2-11-23<br />
| |
| </td>
| |
| <td>1-3/2-7/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>0-3-11-23<br />
| |
| </td>
| |
| <td>1-11/6-7/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>74<br />
| |
| </td>
| |
| <td>0-3-12-23<br />
| |
| </td>
| |
| <td>1-11/6-10/7-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>0-11-12-23<br />
| |
| </td>
| |
| <td>1-7/6-10/7-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>76<br />
| |
| </td>
| |
| <td>0-11-20-23<br />
| |
| </td>
| |
| <td>1-7/6-20/11-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>0-12-20-23<br />
| |
| </td>
| |
| <td>1-10/7-20/11-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>0-12-21-23<br />
| |
| </td>
| |
| <td>1-10/7-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>79<br />
| |
| </td>
| |
| <td>0-20-21-23<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>80<br />
| |
| </td>
| |
| <td>0-2-4-25<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>81<br />
| |
| </td>
| |
| <td>0-2-5-25<br />
| |
| </td>
| |
| <td>1-3/2-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>82<br />
| |
| </td>
| |
| <td>0-4-5-25<br />
| |
| </td>
| |
| <td>1-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>83<br />
| |
| </td>
| |
| <td>0-4-12-25<br />
| |
| </td>
| |
| <td>1-9/8-10/7-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>84<br />
| |
| </td>
| |
| <td>0-2-13-25<br />
| |
| </td>
| |
| <td>1-3/2-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>85<br />
| |
| </td>
| |
| <td>0-4-13-25<br />
| |
| </td>
| |
| <td>1-9/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>86<br />
| |
| </td>
| |
| <td>0-5-13-25<br />
| |
| </td>
| |
| <td>1-11/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>87<br />
| |
| </td>
| |
| <td>0-12-13-25<br />
| |
| </td>
| |
| <td>1-10/7-7/4-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>88<br />
| |
| </td>
| |
| <td>0-12-20-25<br />
| |
| </td>
| |
| <td>1-10/7-20/11-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>89<br />
| |
| </td>
| |
| <td>0-12-21-25<br />
| |
| </td>
| |
| <td>1-10/7-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>90<br />
| |
| </td>
| |
| <td>0-13-21-25<br />
| |
| </td>
| |
| <td>1-7/4-10/9-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>91<br />
| |
| </td>
| |
| <td>0-20-21-25<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>92<br />
| |
| </td>
| |
| <td>0-2-23-25<br />
| |
| </td>
| |
| <td>1-3/2-5/3-5/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>93<br />
| |
| </td>
| |
| <td>0-12-23-25<br />
| |
| </td>
| |
| <td>1-10/7-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>94<br />
| |
| </td>
| |
| <td>0-20-23-25<br />
| |
| </td>
| |
| <td>1-20/11-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>95<br />
| |
| </td>
| |
| <td>0-21-23-25<br />
| |
| </td>
| |
| <td>1-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2-3-4<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-2-3-5<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-1-2-4-5<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-1-3-4-5<br />
| |
| </td>
| |
| <td>1-11/9-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-3-4-5<br />
| |
| </td>
| |
| <td>1-3/2-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-4-5-8<br />
| |
| </td>
| |
| <td>1-11/6-9/8-11/8-14/11<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-1-4-5-9<br />
| |
| </td>
| |
| <td>1-11/9-9/8-11/8-14/9<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-4-5-8-9<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/11-14/9<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-1-3-4-12<br />
| |
| </td>
| |
| <td>1-11/9-11/6-9/8-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-3-4-8-12<br />
| |
| </td>
| |
| <td>1-11/6-9/8-14/11-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-1-4-9-12<br />
| |
| </td>
| |
| <td>1-11/9-9/8-14/9-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-4-8-9-12<br />
| |
| </td>
| |
| <td>1-9/8-14/11-14/9-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-3-8-11-12<br />
| |
| </td>
| |
| <td>1-11/6-14/11-7/6-10/7<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-8-9-11-12<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6-10/7<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-1-2-4-13<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-1-2-5-13<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/8-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-1-4-5-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-11/8-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-2-4-5-13<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-4-5-8-13<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/11-7/4<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-1-4-9-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-14/9-7/4<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-1-5-9-13<br />
| |
| </td>
| |
| <td>1-11/9-11/8-14/9-7/4<br />
| |
| </td>
| |
| <td>pele<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-4-5-9-13<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/9-7/4<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-4-8-9-13<br />
| |
| </td>
| |
| <td>1-9/8-14/11-14/9-7/4<br />
| |
| </td>
| |
| <td>pentacircle<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-5-8-9-13<br />
| |
| </td>
| |
| <td>1-11/8-14/11-14/9-7/4<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-8-9-11-13<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-1-4-12-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-4-8-12-13<br />
| |
| </td>
| |
| <td>1-9/8-14/11-10/7-7/4<br />
| |
| </td>
| |
| <td>pele<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-1-9-12-13<br />
| |
| </td>
| |
| <td>1-11/9-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-4-9-12-13<br />
| |
| </td>
| |
| <td>1-9/8-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-8-9-12-13<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-8-11-12-13<br />
| |
| </td>
| |
| <td>1-14/11-7/6-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-9-11-12-13<br />
| |
| </td>
| |
| <td>1-14/9-7/6-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-8-9-11-20<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-8-9-12-20<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7-20/11<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-8-11-12-20<br />
| |
| </td>
| |
| <td>1-14/11-7/6-10/7-20/11<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-9-11-12-20<br />
| |
| </td>
| |
| <td>1-14/9-7/6-10/7-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-1-9-12-21<br />
| |
| </td>
| |
| <td>1-11/9-14/9-10/7-10/9<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-8-9-12-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-1-9-13-21<br />
| |
| </td>
| |
| <td>1-11/9-14/9-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-8-9-13-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-1-12-13-21<br />
| |
| </td>
| |
| <td>1-11/9-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-8-12-13-21<br />
| |
| </td>
| |
| <td>1-14/11-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-9-12-13-21<br />
| |
| </td>
| |
| <td>1-14/9-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-8-9-20-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-20/11-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-8-12-20-21<br />
| |
| </td>
| |
| <td>1-14/11-10/7-20/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-9-12-20-21<br />
| |
| </td>
| |
| <td>1-14/9-10/7-20/11-10/9<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-2-3-11-23<br />
| |
| </td>
| |
| <td>1-3/2-11/6-7/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-3-11-12-23<br />
| |
| </td>
| |
| <td>1-11/6-7/6-10/7-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-11-12-20-23<br />
| |
| </td>
| |
| <td>1-7/6-10/7-20/11-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-12-20-21-23<br />
| |
| </td>
| |
| <td>1-10/7-20/11-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-2-4-5-25<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-2-4-13-25<br />
| |
| </td>
| |
| <td>1-3/2-9/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-2-5-13-25<br />
| |
| </td>
| |
| <td>1-3/2-11/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-4-5-13-25<br />
| |
| </td>
| |
| <td>1-9/8-11/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-4-12-13-25<br />
| |
| </td>
| |
| <td>1-9/8-10/7-7/4-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-12-13-21-25<br />
| |
| </td>
| |
| <td>1-10/7-7/4-10/9-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-12-20-21-25<br />
| |
| </td>
| |
| <td>1-10/7-20/11-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-12-20-23-25<br />
| |
| </td>
| |
| <td>1-10/7-20/11-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-12-21-23-25<br />
| |
| </td>
| |
| <td>1-10/7-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-20-21-23-25<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2-3-4-5<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-2-4-5-13<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8-11/8-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-1-4-5-9-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-11/8-14/9-7/4<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-4-5-8-9-13<br />
| |
| </td>
| |
| <td>1-9/8-11/8-14/11-14/9-7/4<br />
| |
| </td>
| |
| <td>nofives<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-1-4-9-12-13<br />
| |
| </td>
| |
| <td>1-11/9-9/8-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-4-8-9-12-13<br />
| |
| </td>
| |
| <td>1-9/8-14/11-14/9-10/7-7/4<br />
| |
| </td>
| |
| <td>hemififths<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-8-9-11-12-13<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-8-9-11-12-20<br />
| |
| </td>
| |
| <td>1-14/11-14/9-7/6-10/7-20/11<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-1-9-12-13-21<br />
| |
| </td>
| |
| <td>1-11/9-14/9-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-8-9-12-13-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7-7/4-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-8-9-12-20-21<br />
| |
| </td>
| |
| <td>1-14/11-14/9-10/7-20/11-10/9<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-2-4-5-13-25<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-12-20-21-23-25<br />
| |
| </td>
| |
| <td>1-10/7-20/11-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | {| class="wikitable" |
| | |- |
| | | | Number |
| | | | Chord |
| | | | Transversal |
| | | | Type |
| | |- |
| | | | 1 |
| | | | 0-1-2-3-4-5 |
| | | | 1-11/9-3/2-11/6-9/8-11/8 |
| | | | rastmic |
| | |- |
| | | | 2 |
| | | | 0-1-2-4-5-13 |
| | | | 1-11/9-3/2-9/8-11/8-7/4 |
| | | | jove |
| | |- |
| | | | 3 |
| | | | 0-1-4-5-9-13 |
| | | | 1-11/9-9/8-11/8-14/9-7/4 |
| | | | hemififths |
| | |- |
| | | | 4 |
| | | | 0-4-5-8-9-13 |
| | | | 1-9/8-11/8-14/11-14/9-7/4 |
| | | | nofives |
| | |- |
| | | | 5 |
| | | | 0-1-4-9-12-13 |
| | | | 1-11/9-9/8-14/9-10/7-7/4 |
| | | | hemififths |
| | |- |
| | | | 6 |
| | | | 0-4-8-9-12-13 |
| | | | 1-9/8-14/11-14/9-10/7-7/4 |
| | | | hemififths |
| | |- |
| | | | 7 |
| | | | 0-8-9-11-12-13 |
| | | | 1-14/11-14/9-7/6-10/7-7/4 |
| | | | jove |
| | |- |
| | | | 8 |
| | | | 0-8-9-11-12-20 |
| | | | 1-14/11-14/9-7/6-10/7-20/11 |
| | | | jove |
| | |- |
| | | | 9 |
| | | | 0-1-9-12-13-21 |
| | | | 1-11/9-14/9-10/7-7/4-10/9 |
| | | | jove |
| | |- |
| | | | 10 |
| | | | 0-8-9-12-13-21 |
| | | | 1-14/11-14/9-10/7-7/4-10/9 |
| | | | jove |
| | |- |
| | | | 11 |
| | | | 0-8-9-12-20-21 |
| | | | 1-14/11-14/9-10/7-20/11-10/9 |
| | | | jove |
| | |- |
| | | | 12 |
| | | | 0-2-4-5-13-25 |
| | | | 1-3/2-9/8-11/8-7/4-5/4 |
| | | | otonal |
| | |- |
| | | | 13 |
| | | | 0-12-20-21-23-25 |
| | | | 1-10/7-20/11-10/9-5/3-5/4 |
| | | | utonal |
| | |} |