Omnidiatonic: Difference between revisions
No edit summary |
Terms, step label casing, misc. edits |
||
Line 1: | Line 1: | ||
'''Omnidiatonic''' (also known as '''interdia''' and '''archylino''') is a 7-note [[Maximum variety| | '''Omnidiatonic''' (also known as '''interdia''' and '''archylino''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] 2L 3M 2s. Omnidiatonic is a [[chiral]] scale with LMsMLsM and LMsLMsM variants. [[14edo]] is the first equal division that supports omnidiatonic. The name "omnidiatonic" was given by [[User:CompactStar|CompactStar]] and the name "interdia" was given by [[User:Xenllium|Xenllium]], both of which refer to this scale being intermediate between the [[5L 2s]] diatonic scale and the [[2L 5s]] antidiatonic scale. The name "archylino" was given by [[User:AthiTrydhen|Praveen Venkataramana]], which refers to intervals separated by 64/63, the Archytas comma, being mapped to the same number of scale steps of 2.3.7 JI archylino 1/1 9/8 7/6 4/3 3/2 14/9 7/4 2/1 (MsLMsML). | ||
Omnidiatonic can be tuned as a 7-limit JI scale or a tempered version thereof, where L represents 8/7, | Omnidiatonic can be tuned as a 7-limit JI scale or a tempered version thereof, where L represents 8/7, M represents 9/8, and s represents 28/27. | ||
== Modes == | == Modes == | ||
Line 11: | Line 11: | ||
!Right handed | !Right handed | ||
|- | |- | ||
| | |LMsMLsM | ||
| | |LMsLMsM | ||
|- | |- | ||
| | |LsMLMsM | ||
| | |LMsMLMs | ||
|- | |- | ||
| | |MLMsMLs | ||
| | |MLMsLMs | ||
|- | |- | ||
| | |MLsMLMs | ||
| | |MsLMsML | ||
|- | |- | ||
| | |MsMLsML | ||
| | |MsMLMsL | ||
|- | |- | ||
| | |sMLMsML | ||
| | |sLMsMLM | ||
|- | |- | ||
| | |sMLsMLM | ||
| | |sMLMsLM | ||
|} | |} | ||
Line 39: | Line 39: | ||
! Tuning range (in [[octave]]s) | ! Tuning range (in [[octave]]s) | ||
|- | |- | ||
! Outer generator <br>(''G''<sub>1</sub> = L + | ! Outer generator <br>(''G''<sub>1</sub> = L + 2M + s) | ||
| <math>\displaystyle \frac{1}{2} < G_\text{1} < \frac{3}{5}</math> | | <math>\displaystyle \frac{1}{2} < G_\text{1} < \frac{3}{5}</math> | ||
|- | |- | ||
! RH inner generator <br>(''G''<sub>2R</sub> = | ! RH inner generator <br>(''G''<sub>2R</sub> = M + s) | ||
| <math>\displaystyle 2 G_\text{1} - 1 < G_\text{2R} < 4 G_\text{1} - 2 \text{ for }\frac{1}{2} < G_\text{1} ≤ \frac{4}{7}</math> <br><math>\displaystyle 2 G_\text{1} - 1 < G_\text{2R} < 2 - 3 G_\text{1} \text{ for }\frac{4}{7} ≤ G_\text{1} < \frac{3}{5}</math> | | <math>\displaystyle 2 G_\text{1} - 1 < G_\text{2R} < 4 G_\text{1} - 2 \text{ for }\frac{1}{2} < G_\text{1} ≤ \frac{4}{7}</math> <br><math>\displaystyle 2 G_\text{1} - 1 < G_\text{2R} < 2 - 3 G_\text{1} \text{ for }\frac{4}{7} ≤ G_\text{1} < \frac{3}{5}</math> | ||
|- | |- | ||
! LH inner generator <br>(''G''<sub>2L</sub> = L + | ! LH inner generator <br>(''G''<sub>2L</sub> = L + M) | ||
| <math>\displaystyle 2 - 3 G_\text{1} < G_\text{2L} < 1 - G_\text{1} \text{ for } \frac{1}{2} < G_\text{1} ≤ \frac{4}{7}</math> <br><math>\displaystyle 4 G_\text{1} - 2 < G_\text{2L} < 1 - G_\text{1} \text{ for }\frac{4}{7} ≤ G_\text{1} < \frac{3}{5}</math> | | <math>\displaystyle 2 - 3 G_\text{1} < G_\text{2L} < 1 - G_\text{1} \text{ for } \frac{1}{2} < G_\text{1} ≤ \frac{4}{7}</math> <br><math>\displaystyle 4 G_\text{1} - 2 < G_\text{2L} < 1 - G_\text{1} \text{ for }\frac{4}{7} ≤ G_\text{1} < \frac{3}{5}</math> | ||
|- | |- | ||
Line 51: | Line 51: | ||
| <math>\displaystyle \frac{1}{7} < L < \frac{1}{2}</math> | | <math>\displaystyle \frac{1}{7} < L < \frac{1}{2}</math> | ||
|- | |- | ||
! Middle step <br>( | ! Middle step <br>(M = 2''G''<sub>1</sub> - 1) | ||
| <math>\displaystyle \frac{1}{5} (1 - 2 L) < M < L \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{5} (1 - 2 L) < M < \frac{1}{3} (1 - 2 L) \text{ for } \frac{1}{5} ≤ L < \frac{1}{2}</math> | | <math>\displaystyle \frac{1}{5} (1 - 2 L) < M < L \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{5} (1 - 2 L) < M < \frac{1}{3} (1 - 2 L) \text{ for } \frac{1}{5} ≤ L < \frac{1}{2}</math> | ||
|- | |- | ||
! Small step <br>(s = 1 - ''G''<sub>1</sub> - ''G''<sub>2L</sub>) | ! Small step <br>(s = 1 - ''G''<sub>1</sub> - ''G''<sub>2L</sub>) | ||
| <math>\displaystyle \frac{1}{2} (1 - 5 L) < | | <math>\displaystyle \frac{1}{2} (1 - 5 L) < s < \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle 0 < s < \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{5} ≤ L < \frac{1}{2}</math> | ||
|} | |} | ||
Line 62: | Line 62: | ||
!Tuning | !Tuning | ||
!L | !L | ||
! | !M | ||
!s | !s | ||
!Comments | !Comments | ||
Line 121: | Line 121: | ||
== See also == | == See also == | ||
* [[Nicetone]] – sister 3L | * [[Nicetone]] – sister 3L 2M 2s scale | ||
* [[Antinicetone]] – sister 2L | * [[Antinicetone]] – sister 2L 2M 3s scale | ||
* [[5L 2s]] – LM-equalized version of omnidiatonic | * [[5L 2s]] – LM-equalized version of omnidiatonic | ||
** [[5L 2s Muddles]] – other diatonic muddles | ** [[5L 2s Muddles]] – other diatonic muddles |