Cartesian scale: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 479361876 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 479373586 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-12-25 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-12-25 13:50:13 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>479373586</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //Cartesian sca;e// is a [[periodic scale]] with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A //Cartesian sca;e// is a [[periodic scale]] with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is {ℇ^n g1^i1 ... gk^ik| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. Here the multiplicities are fixed positive integers, and n ranges over al integers. If intervals are written additively as cents, then Descartes(ℇ, g, m) is {nℇ^n + k1g1 + ... + ikgk| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. | ||
If the generators are odd primes and ℇ = 2, then the Cartesian scale is an [[Euler genera|Euler genus]]. | |||
[[math]] | [[math]] | ||
{\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k} | {\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k} | ||
[[math]]</pre></div> | [[math]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Cartesian scales</title></head><body>A <em>Cartesian sca;e</em> is a <a class="wiki_link" href="/periodic%20scale">periodic scale</a> with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is <br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Cartesian scales</title></head><body>A <em>Cartesian sca;e</em> is a <a class="wiki_link" href="/periodic%20scale">periodic scale</a> with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is {ℇ^n g1^i1 ... gk^ik| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. Here the multiplicities are fixed positive integers, and n ranges over al integers. If intervals are written additively as cents, then Descartes(ℇ, g, m) is {nℇ^n + k1g1 + ... + ikgk| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. <br /> | ||
<br /> | |||
If the generators are odd primes and ℇ = 2, then the Cartesian scale is an <a class="wiki_link" href="/Euler%20genera">Euler genus</a>.<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
{\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}&lt;br/&gt;[[math]] | {\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">{\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}</script><!-- ws:end:WikiTextMathRule:0 --></body></html></pre></div> | --><script type="math/tex">{\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}</script><!-- ws:end:WikiTextMathRule:0 --></body></html></pre></div> |
Revision as of 13:50, 25 December 2013
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2013-12-25 13:50:13 UTC.
- The original revision id was 479373586.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
A //Cartesian sca;e// is a [[periodic scale]] with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is {ℇ^n g1^i1 ... gk^ik| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. Here the multiplicities are fixed positive integers, and n ranges over al integers. If intervals are written additively as cents, then Descartes(ℇ, g, m) is {nℇ^n + k1g1 + ... + ikgk| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. If the generators are odd primes and ℇ = 2, then the Cartesian scale is an [[Euler genera|Euler genus]]. [[math]] {\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k} [[math]]
Original HTML content:
<html><head><title>Cartesian scales</title></head><body>A <em>Cartesian sca;e</em> is a <a class="wiki_link" href="/periodic%20scale">periodic scale</a> with an interval of equivalence ℇ (normally 2 or 1200.0 cents or an approximation to the just octave) and k generators g = [g1, g2 ... gk] with k multiplicities m = [m1,m2 ... mk], leading to a scale Descartes(ℇ, g, m) which if ℇ and g are given multplicatively is {ℇ^n g1^i1 ... gk^ik| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. Here the multiplicities are fixed positive integers, and n ranges over al integers. If intervals are written additively as cents, then Descartes(ℇ, g, m) is {nℇ^n + k1g1 + ... + ikgk| 0 ≤ i1 ≤ m1 ... 0 ≤ ik ≤ mk}. <br /> <br /> If the generators are odd primes and ℇ = 2, then the Cartesian scale is an <a class="wiki_link" href="/Euler%20genera">Euler genus</a>.<br /> <br /> <br /> <br /> <br /> <br /> <br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> {\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}<br/>[[math]] --><script type="math/tex">{\Sigma^n g_1^i_1 g_2^i_2 \ldots g_k^i_k| 0 \leq i_1 \leq m_1, 0 \leq i_2 \leq m_2, \ldots, 0 \leq i_k \leq m_k}</script><!-- ws:end:WikiTextMathRule:0 --></body></html>