1106edo: Difference between revisions

Eliora (talk | contribs)
m Formatting
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|1106}}
{{EDO intro|1106}}
== Theory ==
== Theory ==
1106edo is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13 and 17 limits, but even so is distinctly [[consistent]] through the [[17-odd-limit]].  
1106edo is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13- and 17-limit, but even so is distinctly [[consistent]] through the [[17-odd-limit]].  


It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In higher limits, it supports the 79th-octave temperament [[gold]].
It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In the higher limits, it supports the 79th-octave temperament [[gold]].


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|1106}}
{{Harmonics in equal|1106}}


=== Divisors ===
=== Subsets and supersets ===
Since 1106 factors into 2 × 7 × 79, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}.
Since 1106 factors into 2 × 7 × 79, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal
! rowspan="2" | Optimal<br>8ve Stretch (¢)
8ve Stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" |Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3
|{{monzo|1753 -1106}}
| {{monzo| 1753 -1106 }}
|{{val|1106 1753}}
| {{val| 1106 1753 }}
| -0.010
| -0.010
|0.010
| 0.010
|0.99
| 0.99
|-
|-
|2.3.5
| 2.3.5
|{{monzo|-53 10 16}}, {{monzo|40 -56 21}}
| {{monzo| -53 10 16 }}, {{monzo| 40 -56 21 }}
|{{val|1106 1753 2568}}
| {{val| 1106 1753 2568 }}
| +0.001
| +0.001
|0.019
| 0.019
|1.73
| 1.73
|-
|-
|2.3.5.7
| 2.3.5.7
|4375/4374, 52734375/52706752, {{monzo|46 -14 -3 -6}}
| 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }}
|{{val|1106 1753 2568 3105}}
| {{val| 1106 1753 2568 3105 }}
|<nowiki>-0.006</nowiki>
| -0.006
|0.020
| 0.020
|1.83
| 1.83
|-
|-
|2.3.5.7.11
| 2.3.5.7.11
|3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041
| 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041
|{{val|1106 1753 2568 3105 3826}}
| {{val| 1106 1753 2568 3105 3826 }}
| +0.004
| +0.004
|0.026
| 0.026
|2.38
| 2.38
|-
|-
|2.3.5.7.11.13
|2.3.5.7.11.13
|3025/3024, 4096/4095, 4375/4374, 456533/456300, 928125/927472
| 3025/3024, 4096/4095, 4375/4374, 456533/456300, 928125/927472
|{{val|1106 1753 2568 3105 3826 4093}}
| {{val| 1106 1753 2568 3105 3826 4093 }}
|<nowiki>-0.012</nowiki>
| -0.012
|0.043
| 0.043
|3.94
| 3.94
|-
|-
|2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
|2500/2499, 3025/3024, 4096/4095, 8624/8619, 9801/9800, 14875/14572
| 2500/2499, 3025/3024, 4096/4095, 8624/8619, 9801/9800, 14875/14572
|{{val|1106 1753 2568 3105 3826 4093 4521}}
| {{val| 1106 1753 2568 3105 3826 4093 4521 }}
|<nowiki>-0.021</nowiki>
| -0.021
|0.045
| 0.045
|4.11
| 4.11
|}
|}
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"