|
|
(47 intermediate revisions by 22 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-01-02 04:58:33 UTC</tt>.<br>
| |
| : The original revision id was <tt>289036943</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;">**61 tone equal temperament**</span>=
| |
| //61-EDO// refers to the equal division of [[xenharmonic/2_1|2/1]] ratio into 61 equal parts, of 19.6721 [[xenharmonic/cent|cent]]s each. It is the 18th [[prime numbers|prime]] EDO, after of [[59edo]] and before of [[67edo]].
| |
|
| |
|
| =Poem= | | == Theory == |
| These 61 equal divisions of the octave,
| | 61edo is only [[consistent]] to the [[5-odd-limit]]. Its [[3/1|3rd]] and [[5/1|5th]] [[harmonic]]s are sharp of just by more than 6 cents, and the [[7/1|7th]] and [[11/1|11th]], though they err by less, are on the flat side. This limits its harmonic inventory. However, it does possess reasonably good approximations of [[21/16]] and [[23/16]], only a bit more than one cent off in each case. |
| though rare are assuredly a ROCK-tave (har har),
| |
| while the 3rd and 5th harmonics are about six cents sharp,
| |
| (and the flattish 15th poised differently on the harp),
| |
| the 7th and 11th err by less, around three,
| |
| and thus mayhap, a good orgone tuning found to be;
| |
| slightly sharp as well, is the 13th harmonic's place,
| |
| but the 9th and 17th are lacking much grace,
| |
| interestingly the 19th is good but a couple cents flat,
| |
| and the 21st and 23rd are but a cent or two sharp, alack!
| |
|
| |
|
| You could make a lot of sandwiches with 61 cucumbers.
| | As an equal temperament, 61et is characterized by [[tempering out]] 20000/19683 ([[tetracot comma]]) and 262144/253125 ([[passion comma]]) in the 5-limit. In the 7-limit, the [[patent val]] {{val| 61 97 142 '''171''' }} [[support]]s [[valentine]] ({{nowrap| 15 & 46 }}), and is the [[optimal patent val]] for [[freivald]] ({{nowrap| 24 & 37 }}) in the 7-, 11- and 13-limit. The 61d [[val]] {{val| 61 97 142 '''172''' }} is a great tuning for [[modus]] and [[quasisuper]], and is a simple but out-of-tune edo tuning for [[parakleismic]]. |
|
| |
|
| ==**61-EDO Intervals**== | | === Odd harmonics === |
| || **Degrees** || **Cent Value** ||
| | {{Harmonics in equal|61}} |
| || 0 || 0 ||
| |
| || 1 || 19.6721 ||
| |
| || 2 || 39.3443 ||
| |
| || 3 || 59.0164 ||
| |
| || 4 || 78.6885 ||
| |
| || 5 || 98.3607 ||
| |
| || 6 || 118.0328 ||
| |
| || 7 || 137.7049 ||
| |
| || 8 || 157.377 ||
| |
| || 9 || 177.0492 ||
| |
| || 10 || 196.7213 ||
| |
| || 11 || 216.3934 ||
| |
| || 12 || 236.0656 ||
| |
| || 13 || 255.7377 ||
| |
| || 14 || 275.4098 ||
| |
| || 15 || 295.082 ||
| |
| || 16 || 314.7541 ||
| |
| || 17 || 334.4262 ||
| |
| || 18 || 354.0984 ||
| |
| || 19 || 373.7705 ||
| |
| || 20 || 393.4426 ||
| |
| || 21 || 413.1148 ||
| |
| || 22 || 432.7869 ||
| |
| || 23 || 452.459 ||
| |
| || 24 || 472.1311 ||
| |
| || 25 || 491.8033 ||
| |
| || 26 || 511.4754 ||
| |
| || 27 || 531.1475 ||
| |
| || 28 || 550.8197 ||
| |
| || 29 || 570.4918 ||
| |
| || 30 || 590.1639 ||
| |
| || 31 || 609.8361 ||
| |
| || 32 || 629.5082 ||
| |
| || 33 || 649.1803 ||
| |
| || 34 || 668.8525 ||
| |
| || 35 || 688.5246 ||
| |
| || 36 || 708.1967 ||
| |
| || 37 || 727.8689 ||
| |
| || 38 || 747.541 ||
| |
| || 39 || 767.2131 ||
| |
| || 40 || 786.8852 ||
| |
| || 41 || 806.5574 ||
| |
| || 42 || 826.2295 ||
| |
| || 43 || 845.9016 ||
| |
| || 44 || 865.5738 ||
| |
| || 45 || 885.2459 ||
| |
| || 46 || 904.918 ||
| |
| || 47 || 924.5902 ||
| |
| || 48 || 944.2623 ||
| |
| || 49 || 963.9344 ||
| |
| || 50 || 983.6066 ||
| |
| || 51 || 1003.2787 ||
| |
| || 52 || 1022.9508 ||
| |
| || 53 || 1042.623 ||
| |
| || 54 || 1062.2951 ||
| |
| || 55 || 1081.9672 ||
| |
| || 56 || 1101.6393 ||
| |
| || 57 || 1121.3115 ||
| |
| || 58 || 1140.9836 ||
| |
| || 59 || 1160.6557 ||
| |
| || 60 || 1180.3279 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>61edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x61 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;"><strong>61 tone equal temperament</strong></span></h1>
| |
| <em>61-EDO</em> refers to the equal division of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2_1">2/1</a> ratio into 61 equal parts, of 19.6721 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s each. It is the 18th <a class="wiki_link" href="/prime%20numbers">prime</a> EDO, after of <a class="wiki_link" href="/59edo">59edo</a> and before of <a class="wiki_link" href="/67edo">67edo</a>.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Poem"></a><!-- ws:end:WikiTextHeadingRule:2 -->Poem</h1>
| |
| These 61 equal divisions of the octave,<br />
| |
| though rare are assuredly a ROCK-tave (har har),<br />
| |
| while the 3rd and 5th harmonics are about six cents sharp,<br />
| |
| (and the flattish 15th poised differently on the harp),<br />
| |
| the 7th and 11th err by less, around three,<br />
| |
| and thus mayhap, a good orgone tuning found to be;<br />
| |
| slightly sharp as well, is the 13th harmonic's place,<br />
| |
| but the 9th and 17th are lacking much grace,<br />
| |
| interestingly the 19th is good but a couple cents flat,<br />
| |
| and the 21st and 23rd are but a cent or two sharp, alack!<br />
| |
| <br />
| |
| You could make a lot of sandwiches with 61 cucumbers.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Poem-61-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 --><strong>61-EDO Intervals</strong></h2>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | === Subsets and supersets === |
| <tr>
| | 61edo is the 18th [[prime edo]], after [[59edo]] and before [[67edo]]. [[183edo]], which triples it, corrects its approximation to many of the lower harmonics. |
| <td><strong>Degrees</strong><br />
| |
| </td>
| |
| <td><strong>Cent Value</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>19.6721<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>39.3443<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>59.0164<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>78.6885<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>98.3607<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>118.0328<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>137.7049<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>157.377<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>177.0492<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>196.7213<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>216.3934<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>236.0656<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>255.7377<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>275.4098<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>295.082<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>314.7541<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>334.4262<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>354.0984<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>373.7705<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>393.4426<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>413.1148<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>432.7869<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>452.459<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>472.1311<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>491.8033<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>511.4754<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>531.1475<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>550.8197<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>570.4918<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>590.1639<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>609.8361<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>629.5082<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>649.1803<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>668.8525<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>688.5246<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>708.1967<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>727.8689<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>747.541<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>767.2131<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>786.8852<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>806.5574<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>826.2295<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>845.9016<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>865.5738<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>885.2459<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>904.918<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>924.5902<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>944.2623<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>963.9344<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>983.6066<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>1003.2787<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>1022.9508<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>1042.623<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>1062.2951<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>1081.9672<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>1101.6393<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>1121.3115<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>1140.9836<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>1160.6557<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>1180.3279<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Intervals == |
| | {{Interval table}} |
| | |
| | == Notation == |
| | === Ups and downs notation === |
| | 61edo can be notated using [[ups and downs notation]] using [[Helmholtz–Ellis]] accidentals: |
| | |
| | {{Sharpness-sharp8}} |
| | |
| | === Sagittal notation === |
| | This notation uses the same sagittal sequence as [[54edo #Sagittal notation|54edo]]. |
| | |
| | ==== Evo flavor ==== |
| | <imagemap> |
| | File:61-EDO_Evo_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 704 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 140 106 [[513/512]] |
| | rect 140 80 240 106 [[81/80]] |
| | rect 240 80 360 106 [[33/32]] |
| | rect 360 80 480 106 [[27/26]] |
| | default [[File:61-EDO_Evo_Sagittal.svg]] |
| | </imagemap> |
| | |
| | ==== Revo flavor ==== |
| | <imagemap> |
| | File:61-EDO_Revo_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 140 106 [[513/512]] |
| | rect 140 80 240 106 [[81/80]] |
| | rect 240 80 360 106 [[33/32]] |
| | rect 360 80 480 106 [[27/26]] |
| | default [[File:61-EDO_Revo_Sagittal.svg]] |
| | </imagemap> |
| | |
| | ==== Evo-SZ flavor ==== |
| | <imagemap> |
| | File:61-EDO_Evo-SZ_Sagittal.svg |
| | desc none |
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 300 0 696 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 140 106 [[513/512]] |
| | rect 140 80 240 106 [[81/80]] |
| | rect 240 80 360 106 [[33/32]] |
| | rect 360 80 480 106 [[27/26]] |
| | default [[File:61-EDO_Evo-SZ_Sagittal.svg]] |
| | </imagemap> |
| | |
| | In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this edo. |
| | |
| | == Regular temperament properties == |
| | {| class="wikitable center-4 center-5 center-6" |
| | |- |
| | ! rowspan="2" |[[Subgroup]] |
| | ! rowspan="2" |[[Comma list]] |
| | ! rowspan="2" |[[Mapping]] |
| | ! rowspan="2" | Optimal<br>8ve stretch (¢) |
| | ! colspan="2" | Tuning error |
| | |- |
| | ![[TE error|Absolute]] (¢) |
| | ![[TE simple badness|Relative]] (%) |
| | |- |
| | | 2.3 |
| | |{{Monzo| 97 -61 }} |
| | |{{Mapping| 61 97 }} |
| | | −1.97 |
| | | 1.97 |
| | | 10.0 |
| | |- |
| | | 2.3.5 |
| | | 20000/19683, 262144/253125 |
| | |{{Mapping| 61 97 142 }} |
| | | −2.33 |
| | | 1.69 |
| | | 8.59 |
| | |- style="border-top: double;" |
| | | 2.3.5.7 |
| | | 64/63, 2430/2401, 3125/3087 |
| | |{{mapping| 61 97 142 172 }} (61d) |
| | | −3.06 |
| | | 1.93 |
| | | 9.84 |
| | |- style="border-top: double;" |
| | | 2.3.5.7 |
| | | 126/125, 1029/1024, 2240/2187 |
| | |{{Mapping| 61 97 142 171 }} (61) |
| | | −1.32 |
| | | 2.29 |
| | | 11.7 |
| | |} |
| | |
| | === Rank-2 temperaments === |
| | {| class="wikitable center-all left-5" |
| | |+ style="font-size: 105%;" |Table of rank-2 temperaments by generator |
| | |- |
| | ! Periods<br>per 8ve |
| | ! Generator* |
| | ! Cents* |
| | ! Associated<br>ratio* |
| | ! Temperament |
| | |- |
| | | 1 |
| | | 2\61 |
| | | 39.3 |
| | | 40/39 |
| | |[[Hemivalentine]] (61) |
| | |- |
| | | 1 |
| | | 3\61 |
| | | 59.0 |
| | | 28/27 |
| | |[[Dodecacot]] (61de…) |
| | |- |
| | | 1 |
| | | 4\61 |
| | | 78.7 |
| | | 22/21 |
| | |[[Valentine]] (61) |
| | |- |
| | | 1 |
| | | 5\61 |
| | | 98.4 |
| | | 16/15 |
| | |[[Passion]] (61de…) / [[passionate]] (61) |
| | |- |
| | | 1 |
| | | 7\61 |
| | | 137.7 |
| | | 13/12 |
| | |[[Quartemka]] (61) |
| | |- |
| | | 1 |
| | | 9\61 |
| | | 177.0 |
| | | 10/9 |
| | |[[Modus]] (61de) / [[wollemia]] (61e) |
| | |- |
| | | 1 |
| | | 11\61 |
| | | 236.1 |
| | | 8/7 |
| | |[[Slendric]] (61) |
| | |- |
| | | 1 |
| | | 16\61 |
| | | 314.8 |
| | | 6/5 |
| | |[[Parakleismic]] (61d) |
| | |- |
| | | 1 |
| | | 23\61 |
| | | 452.5 |
| | | 13/10 |
| | |[[Maja]] (61d) |
| | |- |
| | | 1 |
| | | 25\61 |
| | | 491.8 |
| | | 4/3 |
| | |[[Quasisuper]] (61d) |
| | |- |
| | | 1 |
| | | 28\61 |
| | | 550.8 |
| | | 11/8 |
| | |[[Freivald]] (61) |
| | |} |
| | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave |
| | |
| | == Instruments == |
| | A [[Lumatone mapping for 61edo]] has now been demonstrated (see the Valentine mapping for full gamut coverage). |
| | |
| | == See also == |
| | |
| | === Introductory poem === |
| | [[Peter Kosmorsky]] wrote a poem on 61edo; see [[User:Spt3125/61edo poem|the 61edo poem]]. |
| | |
| | == Music == |
| | ; [[Bryan Deister]] |
| | * [https://www.youtube.com/shorts/1Ai__APev5M ''microtonal improvisation in 61edo''] (2025) |