253edo: Difference between revisions

Plumtree (talk | contribs)
m Infobox ET now computes most parameters automatically
m + category
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|253}}
{{ED intro}}


== Theory ==
== Theory ==
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out [[32805/32768]] in the 5-limit; [[2401/2400]] in the 7-limit; [[385/384]], 1375/1372 and [[4000/3993]] in the 11-limit; [[325/324]], [[1575/1573]] and [[2200/2197]] in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[385/384]], [[1375/1372]] and [[4000/3993]] in the [[11-limit]]; [[325/324]], [[1575/1573]] and [[2200/2197]] in the [[13-limit]]; [[375/374]] and [[595/594]] in the [[17-limit]]. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.


253 = 11 × 23, and has subset edos [[11edo]] and [[23edo]].
=== Prime harmonics ===
{{Harmonics in equal|253}}


=== Prime harmonics ===
=== Subsets and supersets ===
{{Harmonics in equal|253|columns=11}}
Since 253 factors into 11 × 23, and has subset edos [[11edo]] and [[23edo]]. [[1012edo]] divides 253edo's step size into 4 equal parts and provides a good approximation of the 13-limit.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>Stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 23: Line 25:
| 2.3
| 2.3
| {{monzo| 401 -253 }}
| {{monzo| 401 -253 }}
| [{{val| 253 401 }}]
| {{mapping| 253 401 }}
| -0.007
| −0.007
| 0.007
| 0.007
| 0.14
| 0.14
Line 30: Line 32:
| 2.3.5
| 2.3.5
| 32805/32768, {{monzo| -4 -37 27 }}
| 32805/32768, {{monzo| -4 -37 27 }}
| [{{val| 253 401 587 }}]
| {{mapping| 253 401 587 }}
| +0.300
| +0.300
| 0.435
| 0.435
Line 37: Line 39:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 32805/32768, 390625/387072
| 2401/2400, 32805/32768, 390625/387072
| [{{val| 253 401 587 710 }}]
| {{mapping| 253 401 587 710 }}
| +0.335
| +0.335
| 0.381
| 0.381
Line 44: Line 46:
| 2.3.5.7.11
| 2.3.5.7.11
| 385/384, 1375/1372, 4000/3993, 19712/19683
| 385/384, 1375/1372, 4000/3993, 19712/19683
| [{{val| 253 401 587 710 875 }}]
| {{mapping| 253 401 587 710 875 }}
| +0.333
| +0.333
| 0.341
| 0.341
Line 51: Line 53:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197
| [{{val| 253 401 587 710 875 936 }}]
| {{mapping| 253 401 587 710 875 936 }}
| +0.323
| +0.323
| 0.312
| 0.312
Line 58: Line 60:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197
| [{{val| 253 401 587 710 875 936 1034 }}]
| {{mapping| 253 401 587 710 875 936 1034 }}
| +0.298
| +0.298
| 0.295
| 0.295
Line 66: Line 68:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per Octave
|-
! Generator<br>(Reduced)
! Periods<br />per 8ve
! Cents<br>(Reduced)
! Generator*
! Associated<br>Ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 89: Line 92:
| 498.02
| 498.02
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz (temperament)|Helmholtz]]
|-
|-
| 1
| 1
Line 97: Line 100:
| [[Cotritone]]
| [[Cotritone]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==
* 63 32 63 63 32: [[3L 2s|Pentic]]
* 63 32 63 63 32: One of many [[3L 2s|pentic]] scales available
* 43 43 19 43 43 43 19: [[Helmholtz]][7]
* 43 43 19 43 43 43 19: [[Helmholtz (temperament)|Helmholtz]][7]
* 41 41 24 41 41 41 24: [[Meantone]][7]
* 41 41 24 41 41 41 24: [[Meantone]][7]
* 35 35 35 35 35 35 35 8: [[Porcupine]][8]
* 35 35 35 35 35 35 35 8: [[Porcupine]][8]
Line 108: Line 112:
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]]
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]]


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:3-limit record edos|###]] <!-- 3-digit number -->
[[Category:Tertiaschis]]
[[Category:Tertiaschis]]