353edo: Difference between revisions
regular temp properties |
mNo edit summary |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
{{ | |||
== Theory == | == Theory == | ||
353edo is in[[consistent]] in the [[5-odd-limit]] and [[harmonic]] [[3/1|3]] is about halfway between its steps. It is suitable for use with the 2.9.15.7.11.13.17.23.29.31.37 [[subgroup]]. This makes 353edo an "upside-down" edo—poor approximation of the low harmonics, but an improvement over the high ones. Nonetheless, it provides the [[optimal patent val]] for [[didacus]], the 2.5.7 subgroup temperament tempering out [[3136/3125]], and serves as a very close approximation of its just-[[7/4]] tuning. | |||
353edo | Using the [[patent val]] nonetheless, 353edo supports [[apparatus]], [[marvo]] and [[zarvo]]. | ||
=== | === Odd harmonics === | ||
{{Harmonics in equal|353}} | |||
=== Subsets and supersets === | |||
353edo is the 71st [[prime edo]]. | |||
The 11-step perfect fifth in this scale becomes 209\353, and it corresponds to 98/65, which is sharp of 3/2 by 196/195. | === Miscellaneous properties === | ||
[[Eliora]] associates 353edo with a reformed Hebrew calendar. In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor (מחזור), plural: makhzorim) are leap. When converted to [[19edo]], this results in [[5L 2s]] mode, and simply the diatonic major scale. Following this logic, a temperament (→ [[rectified hebrew]]) can be constructed for the Rectified Hebrew calendar. The 11-step perfect fifth in this scale becomes 209\353, and it corresponds to 98/65, which is sharp of 3/2 by 196/195. | |||
In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic. | In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic. | ||
The number 353 in this version of the Hebrew calendar must not be confused with the number of days in ''shanah chaserah'' (שנה חסרה) | The number 353 in this version of the Hebrew calendar must not be confused with the number of days in ''shanah chaserah'' (שנה חסרה), the deficient year. | ||
It is possible to use a superpyth-ish fifth of Rectified Hebrew fifth, 209\353, as a generator. In this case, {{nowrap|76 & 353}} temperament is obtained. In the 2.5.7.13 subgroup, this results in the fifth being equal to 98/65 and the comma basis of 10985/10976, {{Monzo|-103 0 -38 51 0 13}}. | |||
== Table of intervals == | == Table of intervals == | ||
{| class="wikitable mw-collapsible mw-collapsed" | {| class="wikitable mw-collapsible mw-collapsed" | ||
|- | |- | ||
! Step | |||
! Note name* | |||
! Associated ratio** | |||
|- | |- | ||
| | | 0 | ||
|C | | C | ||
| | | 1/1 | ||
|- | |- | ||
| | | 1 | ||
|C- | | C-C# | ||
| | | | ||
|- | |- | ||
| | | 2 | ||
|C- | | C-Db | ||
| | | | ||
|- | |- | ||
| | | 3 | ||
|C-D | | C-D | ||
| | | [[196/195]] | ||
|- | |- | ||
| | | 4 | ||
|C# | | C-D# | ||
| | | | ||
|- | |- | ||
| | | 19 | ||
| | | C# | ||
|[[ | | [[26/25]] | ||
|- | |- | ||
| | | 38 | ||
|Db | | Db | ||
|[[13 | | [[14/13]] | ||
|- | |- | ||
| | | 41 | ||
|Db- | | Db-D | ||
|[[ | | [[13/12]] | ||
|- | |- | ||
| | | 46 | ||
| | | Db-F | ||
| | | [[35/32]] | ||
|- | |- | ||
| | | 57 | ||
|D | | D | ||
| | | | ||
|- | |- | ||
| | | 76 | ||
| | | D# | ||
| | | | ||
|- | |- | ||
| | | 95 | ||
| | | Eb | ||
| | | | ||
|- | |- | ||
| | | 114 | ||
|E | | E | ||
|[[ | | [[5/4]] | ||
|- | |- | ||
| | | 133 | ||
|E | | E# | ||
|13/10 | | [[13/10]] I (patent val approximation) | ||
|- | |- | ||
| | | 134 | ||
| | | E#-C# | ||
| | | 13/10 II (direct approximation) | ||
|- | |- | ||
| | | 152 | ||
|F | | F | ||
| | | | ||
|- | |- | ||
| | | 171 | ||
| | | F# | ||
| | | [[7/5]] | ||
|- | |- | ||
| | | 190 | ||
|Gb | | Gb | ||
| | | | ||
|- | |- | ||
| | | 206 | ||
| | | Gb-Bb | ||
| | | 3/2 | ||
|- | |- | ||
| | | 209 | ||
|G | | G | ||
| | | [[98/65]] | ||
|- | |- | ||
| | | 228 | ||
| | | G# | ||
| | | | ||
|- | |- | ||
| | | 247 | ||
| | | Ab | ||
| | | [[13/8]] | ||
|- | |- | ||
| | | 266 | ||
|A | | A | ||
| | | | ||
|- | |- | ||
| | | 285 | ||
| | | A# | ||
| | | [[7/4]] | ||
|- | |- | ||
| | | 304 | ||
| | | Bb | ||
| | | | ||
|- | |- | ||
| | | 323 | ||
|B | | B | ||
| | | | ||
|- | |- | ||
|353 | | 342 | ||
|C | | B#/Cb | ||
|2/1 | | | ||
|- | |||
| 353 | |||
| C | |||
| 2/1 | |||
|} | |} | ||
<nowiki />* Diatonic Hebrew[19] version | |||
<nowiki />** 2.5.7.13 subgroup | |||
== Regular temperament properties == | == Regular temperament properties == | ||
Assuming 353edo is treated as the 2.5.7.11.13.17 subgroup temperament. | Assuming 353edo is treated as the 2.5.7.11.13.17 subgroup temperament. | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! rowspan="2" | [[Subgroup]] | ||
![[TE simple badness|Relative]] (%) | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |- | ||
|2.5 | | 2.5 | ||
|820 -353 | | {{monzo| 820 -353 }} | ||
| | | {{mapping| 353 820 }} | ||
| | | −0.263 | ||
|0.263 | | 0.263 | ||
|7.74 | | 7.74 | ||
|- | |- | ||
|2.5.7 | | 2.5.7 | ||
|3136/3125, 209 -9 -67 | | 3136/3125, {{monzo| 209 -9 -67 }} | ||
| | | {{mapping| 353 820 991 }} | ||
| | | −0.177 | ||
|0.247 | | 0.247 | ||
|7.26 | | 7.26 | ||
|- | |- | ||
|2.5.7.11 | | 2.5.7.11 | ||
|3136/3125, 5767168/5764801, -20 -6 1 9 | | 3136/3125, 5767168/5764801, {{monzo| -20 -6 1 9 }} | ||
| | | {{mapping| 353 820 991 1221 }} | ||
| | | −0.089 | ||
|0.263 | | 0.263 | ||
|7.73 | | 7.73 | ||
|- | |- | ||
|2.5.7.11.13 | | 2.5.7.11.13 | ||
|3136/3125, 4394/4375, 6656/6655, 5767168/5764801 | | 3136/3125, 4394/4375, 6656/6655, 5767168/5764801 | ||
| | | {{mapping| 353 820 991 1221 1306 }} | ||
| | | −0.024 | ||
|0.268 | | 0.268 | ||
|7.89 | | 7.89 | ||
|- | |- | ||
|2.5.7.11.13.17 | | 2.5.7.11.13.17 | ||
|3136/3125, 4394/4375, 7744/7735, 60112/60025, 64141/64000 | | 3136/3125, 4394/4375, 7744/7735, 60112/60025, 64141/64000 | ||
| | | {{mapping| 353 820 991 1221 1306 1443 }} | ||
| | | −0.037 | ||
|0.247 | | 0.247 | ||
|7.26 | | 7.26 | ||
|} | |} | ||
=== Rank-2 temperaments | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
!Periods | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
per | |- | ||
!Generator | ! Periods<br />per 8ve | ||
! Generator* | |||
!Cents | ! Cents* | ||
! Associated<br />ratio* | |||
!Associated | ! Temperament | ||
ratio | |||
! | |||
|- | |- | ||
|1 | | 1 | ||
|19\353 | | 19\353 | ||
|64.59 | | 64.59 | ||
|26/25 | | 26/25 | ||
|[[ | | [[Rectified hebrew]] | ||
|- | |- | ||
|1 | | 1 | ||
|34\353 | | 34\353 | ||
|115.58 | | 115.58 | ||
|77/72 | | 77/72 | ||
|[[Subgroup temperaments#Apparatus|Apparatus]] | | [[Subgroup temperaments#Apparatus|Apparatus]] | ||
|- | |- | ||
|1 | | 1 | ||
|152\353 | | 152\353 | ||
|516.71 | | 516.71 | ||
|27/20 | | 27/20 | ||
|[[Marvo]] (353c) / [[zarvo]] (353cd) | | [[Marvo]] (353c) / [[zarvo]] (353cd) | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
* RectifiedHebrew[19] | |||
* RectifiedHebrew[130] | == Scales == | ||
* Austro-Hungarian Minor[9] | * RectifiedHebrew[19] – 18L 1s | ||
* RectifiedHebrew[130] – 93L 37s | |||
* Austro-Hungarian Minor[9] – 57 38 38 38 38 38 38 38 30 | |||
== See also == | == See also == | ||
Line 243: | Line 234: | ||
== Music == | == Music == | ||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=JrSEGE6_oys ''Snow On My City''] (2022) – cover of [[wikipedia:Naomi Shemer|Naomi Shemer]] in Rectified Hebrew and apparatus | |||
; [[Mercury Amalgam]] | |||
* [https://www.youtube.com/watch?v=z-SxvrnkTzU ''Bottom Text''] (2022) in Rectified Hebrew | |||
== External links == | |||
= | |||
* [http://individual.utoronto.ca/kalendis/hebrew/rect.htm Rectified Hebrew Calendar] | * [http://individual.utoronto.ca/kalendis/hebrew/rect.htm Rectified Hebrew Calendar] | ||
[[Category:Didacus]] | [[Category:Didacus]] | ||
[[Category:Listen]] | [[Category:Listen]] | ||
{{Todo| review }} |