164edo: Difference between revisions

Expansion
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2<sup>2</sup> × 41
{{ED intro}}
| Step size = 7.31707¢
| Fifth = 96\164 (702.44¢) (→ [[41edo|24\41]])
| Semitones = 16:12 (117.07¢ : 87.80¢)
| Consistency = 5
}}
{{EDO intro|164}}


== Theory ==
== Theory ==
In the 5-limit, 164edo tempers out the [[würschmidt comma]], 393216/390625, and the [[vulture comma]], {{monzo| 24 -21 4 }}. It supplies the [[optimal patent val]] for the [[würschmidt]] temperament.  
164 = 4 × 41, and 164edo shares its [[perfect fifth|fifth]] with [[41edo]]. In the 5-limit, 164et tempers out the [[würschmidt comma]], 393216/390625, and the [[vulture comma]], {{monzo| 24 -21 4 }}. It supplies the [[optimal patent val]] for the [[würschmidt]] temperament.  


In the [[patent val]] {{val| 164 260 381 '''460''' '''567''' 607 }}, it tempers out [[196/195]], [[352/351]], [[385/384]], [[441/440]], [[676/675]], and supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;123 temperament, and the 13-limit [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.  
In the [[patent val]] {{val| 164 260 381 '''460''' '''567''' 607 }}, it tempers out [[196/195]], [[352/351]], [[385/384]], [[441/440]], [[676/675]], and supplies the optimal patent val for the 7-limit, 1/41 octave period {{nowrap|41 &amp; 123}} temperament, and the 13-limit [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.  


In the alternative val 164de {{val| 164 260 381 '''461''' '''568''' 607 }}, it tempers out [[243/242]], [[351/350]], [[364/363]], [[640/637]], [[676/675]], [[729/728]], and [[1575/1573]].  
In the alternative val 164de {{val| 164 260 381 '''461''' '''568''' 607 }}, it tempers out [[243/242]], [[351/350]], [[364/363]], [[640/637]], [[676/675]], [[729/728]], and [[1575/1573]]. The 164dg val is a good tuning for 7- to 19-limit [[buzzard]] temperament, although if harmonic 11 is desired it is only easily accessible through the patent mapping.
 
164 = 4 × 41, with divisors 2, 4, 41, 82.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|164}}
{{Harmonics in equal|164}}
=== Subsets and supersets ===
Since {{nowrap|164 {{=}} {{factorization|164}}}}, 164edo has subset edos {{EDOs| 2, 4, 41, 82 }}. [[328edo]], which doubles it, provides good correction for the approximation to harmonics 7 and 11, and is [[consistent]] in the [[13-odd-limit]].


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3.5
| 2.3.5
| 393216/390625, {{monzo| 24 -21 4 }}
| 393216/390625, {{monzo| 24 -21 4 }}
| [{{val| 164 260 381 }}]
| {{mapping| 164 260 381 }}
| -0.316
| −0.316
| 0.262
| 0.262
| 3.58
| 3.58
Line 41: Line 36:
| 2.3.5.13
| 2.3.5.13
| 676/675, 256000/255879, 393216/390625
| 676/675, 256000/255879, 393216/390625
| [{{val| 164 260 381 607 }}]
| {{mapping| 164 260 381 607 }}
| -0.300
| −0.300
| 0.229
| 0.229
| 3.13
| 3.13
Line 49: Line 44:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per Otave
|-
! Generator<br>(Reduced)
! Periods<br />per 8ve
! Cents<br>(Reduced)
! Generator*
! Associated<br>Ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 99: Line 95:
|-
|-
| 4
| 4
| 68\164<br>(14\164)
| 68\164<br />(14\164)
| 497.56<br>(102.44)
| 497.56<br />(102.44)
| 4/3<br>(35/33)
| 4/3<br />(35/33)
| [[Undim]] (164deff) / [[unlit]] (164f)
| [[Undim]] (164deff) / [[unlit]] (164f)
|-
|-
| 41
| 41
| 53\164<br>(1\164)
| 53\164<br />(1\164)
| 387.80<br>(7.32)
| 387.80<br />(7.32)
| 5/4<br>(32805/32768)
| 5/4<br />(32805/32768)
| [[Counterpyth]]
| [[Countercomp]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Würschmidt]]
[[Category:Würschmidt]]