Gallery of 3-SN scales: Difference between revisions

Lhearne (talk | contribs)
m Update linking
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
See [[SN scale]] and [[Rank-3 scale]].
See [[SN scale]] and [[Rank-3 scale]].


Line 153: Line 151:
|L - M = M - s
|L - M = M - s
|sAsLsAs
|sAsLsAs
|Meantone[7] MODMOS
|[[Meantone]][7] MODMOS
|81/80
|81/80
|-
|-
Line 237: Line 235:
|L - M = M - s
|L - M = M - s
|sAsLsAs
|sAsLsAs
|Meantone[7] MODMOS
|[[Meantone]][7] MODMOS
|81/80, 126/125
|81/80, 126/125
|}
|}
Line 390: Line 388:
|-
|-
|m = s
|m = s
|sLsssssLss
|[[OTC 2L 8s|sLsssssLss]]
|[[Srutal]][10] 4M (pentachordal decatonic)
|[[Srutal]][10] 4M (pentachordal decatonic)
|2048/2025
|2048/2025
Line 406: Line 404:
|L - m = m - s
|L - m = m - s
|sLssdssLss
|sLssdssLss
|Ampersand[10] MODMOS
|[[Ampersand]][10] MODMOS
|34171875/33554432
|34171875/33554432
|-
|-
Line 510: Line 508:
|-
|-
|3
|3
|~ 16/15 8/7 5/4 4/3 10/7 32/16 5/3 16/9 40/21 2/1
|~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1
|mmLmmmLmms
|mmLmmmLmms
|ssLsssLsss
|ssLsssLsss
Line 544: Line 542:
|-
|-
|m = s
|m = s
|sLsssssLss
|[[OTC 2L 8s|sLsssssLss]]
|[[Pajara]][10] 4M (pentachordal decatonic)
|[[Pajara]][10] 4M (pentachordal decatonic)
|50/49, 64/63
|50/49, 64/63
Line 560: Line 558:
|L - m = m - s
|L - m = m - s
|sLssdssLss
|sLssdssLss
|Miracle[10] MODMOS
|[[Miracle]][10] MODMOS
|225/224, 1029/1024
|225/224, 1029/1024
|-
|-
Line 678: Line 676:
|-
|-
|3
|3
|~ 16/15 8/7 5/4 4/3 10/7 32/16 5/3 16/9 40/21 2/1
|~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1
|mmLmmmLmms
|mmLmmmLmms
|ssLsssLsss
|ssLsssLsss
Line 712: Line 710:
|-
|-
|m = s
|m = s
|sLsssssLss
|[[OTC 2L 8s|sLsssssLss]]
|[[Pajarous]][10] 4M (pentachordal decatonic)
|[[Pajarous]][10] 4M (pentachordal decatonic)
|50/49, 55/54, 64/63
|50/49, 55/54, 64/63
Line 723: Line 721:
|L - m = m - s
|L - m = m - s
|sLssdssLss
|sLssdssLss
|Miracle[10] MODMOS
|[[Miracle]][10] MODMOS
|225/224, 243/242, 385/384
|225/224, 243/242, 385/384
|}
|}
Line 834: Line 832:
|-
|-
|3
|3
|~ 16/15 8/7 5/4 4/3 10/7 32/16 5/3 16/9 40/21 2/1
|~ 16/15 8/7 5/4 4/3 10/7 32/21 5/3 16/9 40/21 2/1
|mmLmmmLmms
|mmLmmmLmms
|ssLsssLsss
|ssLsssLsss
Line 868: Line 866:
|-
|-
|m = s
|m = s
|sLsssssLss
|[[OTC 2L 8s|sLsssssLss]]
|[[Pajaric]][10] 4M (pentachordal decatonic)
|[[Pajaric]][10] 4M (pentachordal decatonic)
|45/44, 50/49, 56/55
|45/44, 50/49, 56/55
Line 879: Line 877:
|L - m = m - s
|L - m = m - s
|sLssdssLss
|sLssdssLss
|Miracle[10] MODMOS
|[[Miracle]][10] MODMOS
|225/224, 243/242, 385/384
|225/224, 243/242, 385/384
|}
|}
Line 952: Line 950:
|L - M = M - s
|L - M = M - s
|LdLdLsLdLdLdLsLdLdL
|LdLdLsLdLdLdLsLdLdL
|Magic[19] MODMOS
|[[Magic]][19] MODMOS
|225/224, 245/243
|225/224, 245/243
|-
|-
|s = 0
|s = 0
|LLLsLLLLsLLL
|[[OTC 10L 2s|LLLsLLLLsLLL]]
|[[Pajara]][12] 4M (hexachordal dodecatonic)
|[[Pajara]][12] 4M (hexachordal dodecatonic)
|50/49, 64/63
|50/49, 64/63
Line 1,036: Line 1,034:
|L - M = M - s
|L - M = M - s
|LdLdLsLdLdLdLsLdLdL
|LdLdLsLdLdLdLsLdLdL
|Magic[19] MODMOS
|[[Magic]][19] MODMOS
|100/99, 225/224, 245/243
|100/99, 225/224, 245/243
|-
|-
|s = 0
|s = 0
|LLLsLLLLsLLL
|[[OTC 10L 2s|LLLsLLLLsLLL]]
|[[Pajarous]][12] 4M (hexachordal dodecatonic)
|[[Pajarous]][12] 4M (hexachordal dodecatonic)
|50/49, 55/54, 64/63
|50/49, 55/54, 64/63
Line 1,113: Line 1,111:
|L - M = M - s
|L - M = M - s
|LdLdLsLdLdLdLsLdLdL
|LdLdLsLdLdLdLsLdLdL
|Witchcraft[19] MODMOS
|[[Witchcraft]][19] MODMOS
|225/224, 245/243, 441/440
|225/224, 245/243, 441/440
|-
|-
|s = 0
|s = 0
|LLLsLLLLsLLL
|[[OTC 10L 2s|LLLsLLLLsLLL]]
|[[Pajaric]][12] 4M (hexachordal dodecatonic)
|[[Pajaric]][12] 4M (hexachordal dodecatonic)
|45/44, 50/49, 56/55
|45/44, 50/49, 56/55
Line 1,440: Line 1,438:
|-
|-
|L = s
|L = s
|sLsssssLs
|[[OTC 2L ns|sLsssssLs]]
|[[Mavila]][9] MODMOS
|[[Mavila]][9] MODMOS
| 135/128
| 135/128
Line 1,446: Line 1,444:
|L - M = M - s
|L - M = M - s
|sLssAssLs
|sLssAssLs
|Orson[9] MODMOS
|[[Orson]][9] MODMOS
|2109375/2097152
|2109375/2097152
|-
|-
Line 1,538: Line 1,536:
|-
|-
|L = s
|L = s
|sLsssssLs
|[[OTC 2L ns|sLsssssLs]]
|[[Pelogic]][9] MODMOS
|[[Pelogic]][9] MODMOS
| 21/20, 135/128
| 21/20, 135/128
Line 1,544: Line 1,542:
|L - M = M - s
|L - M = M - s
|sLssAssLs
|sLssAssLs
|Orwell[9] MODMOS
|[[Orwell]][9] MODMOS
|225/224, 1728/1715
|225/224, 1728/1715
|}
|}
Line 1,655: Line 1,653:
|L - M = M - s
|L - M = M - s
|sLssAssLs
|sLssAssLs
|Orwell[9] MODMOS
|[[Orwell]][9] MODMOS
|99/88, 121/120, 176/175
|99/88, 121/120, 176/175
|}
|}
Line 1,784: Line 1,782:
|L - M = M - s
|L - M = M - s
|LdLLLsLLLdLL
|LdLLLsLLLdLL
|Meantone[12] MODMOS
|[[Meantone]][12] MODMOS
|81/80, 126/125
|81/80, 126/125
|-
|-
Line 1,795: Line 1,793:
|LsLLLLLLsLL
|LsLLLLLLsLL
|[[Pelogic]][11] MODMOS
|[[Pelogic]][11] MODMOS
|21/20, 135/
|21/20, 135/128
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 1,919: Line 1,917:
|L - M = M - s
|L - M = M - s
|LdLLLsLLLdLL
|LdLLLsLLLdLL
|Meanpop[12] MODMOS
|[[Meanpop]][12] MODMOS
|81/80, 126/125, 385/384
|81/80, 126/125, 385/384
|-
|-
Line 1,998: Line 1,996:
|L - m = m - s
|L - m = m - s
|sAssAsAsAsLsAsAsAssAsA
|sAssAsAsAsLsAsAsAssAsA
|Magic[22] MODMOS
|[[Magic]][22] MODMOS
|100/99, 225/224, 245/243
|100/99, 225/224, 245/243
|-
|-
Line 2,144: Line 2,142:
|-
|-
|m = s
|m = s
|ssLsssLsss
|[[OTC 2L 8s|ssLsssLsss]]
|[[Srutal]][10] 4M (pentachordal decatonic)
|[[Srutal]][10] 4M (pentachordal decatonic)
|2048/2025
|2048/2025
|-
|-
|L = m
|L = m
|sLLLsLLLsL
|[[7L 3s|sLLLsLLLsL]]
|[[Dicot family|Dicot]][10] MODMOS
|[[Dicot family|Dicot]][10] MODMOS
|25/24
|25/24
Line 2,293: Line 2,291:
|-
|-
|m = s
|m = s
|ssLsssLsss
|[[OTC 2L 8s|ssLsssLsss]]
|[[Diaschismic family#Pajara|Pajara]][10] 4M (pentachordal decatonic)
|[[Diaschismic family#Pajara|Pajara]][10] 4M (pentachordal decatonic)
|50/49, 64/63
|50/49, 64/63
|-
|-
|L = m
|L = m
|sLLLsLLLsL
|[[OTC 7L 3s|sLLLsLLLsL]]
|[[Dicot family|Sharp]][10] MODMOS
|[[Dicot family|Sharp]][10] MODMOS
|25/24, 28/27
|25/24, 28/27
Line 2,432: Line 2,430:
|-
|-
|m = s
|m = s
|ssLsssLsss
|[[OTC 2L 8s|ssLsssLsss]]
|[[Diaschismic family#Pajaric|Pajaric]][10] 4M (pentachordal decatonic)
|[[Diaschismic family#Pajaric|Pajaric]][10] 4M (pentachordal decatonic)
|45/44, 50/49, 56/55
|45/44, 50/49, 56/55
Line 2,679: Line 2,677:
|L - M = M - s
|L - M = M - s
|LsLALsL
|LsLALsL
|Tetracot[7] MODMOS
|[[Tetracot]][7] MODMOS
|20000/19683
|20000/19683
|-
|-
Line 2,959: Line 2,957:
|L - m = m - s
|L - m = m - s
|LsLALsL
|LsLALsL
|Tetracot[7] MODMOS
|[[Tetracot family#Subgroup temperament|Tetracot]][7] MODMOS
|100/99, 243/242
|100/99, 243/242
|}
|}
Line 3,129: Line 3,127:
|(6, 5, 4)
|(6, 5, 4)
|}
|}
====[[SNS (2/1, 3/2, 6/5)-12|(2/1, 3/2, 6/5)[12]]]====
 
===== (2/1, 3/2, 6/5: 100/99, 144/143)[7] (No-7 Ptolemismic) =====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
!Steps in JI
!Steps in JI
!Step sizes in cents
!Step sizes in cents (TE)
|-
|-
|7L 1m 4s
|1L 4m 2s
|(27/25, 25/24, 250/243)
|(9/8~25/22, 10/9~11/10, 27/25~12/11~13/12)
|(133.2376c, 70.6724c, 49.1661c)
|(209.5416c, 175.8918c, 142.7754c)
|}
|}
{| class="wikitable"
{| class="wikitable"
!Mode number
!Mode number
!Mode in JI
!Mode as simplest JI pre-image
!Step pattern
!Step pattern
!Meantone[12]
!Meantone[7]
!UDP
!Diatonic mode
!Porcupine[7]
!UDP
!UDP
!Porcupine mode
![[Mode height]]
![[Mode height]]
|-
|-
| -6
| -3
|250/243 10/9 2500/2187 100/81 4/3 1000/729 40/27 125/81 5/3 1250/729 50/27 2/1
|~ 12/11 6/5 4/3 13/9 8/5 9/5 2/1
|sLsLLsLmLsLL
|smmsmLm
|sLsLLsLsLsLL
|sLLsLLL
|<nowiki>1|10</nowiki>
|<nowiki>0|6</nowiki>
| -0.0622
|Lochrian
|sssssLs
|<nowiki>1|5</nowiki>
|Dark diminished
|
|-
|-
| -5
| -2
|250/243 10/9 125/108 5/4 625/486 25/18 3/2 125/81 5/3 1250/729 50/27 2/1
|~ 10/9 6/5 4/3 22/15 8/5 16/9 2/1
|sLmLsLLsLsLL
|msmmsmL
|sLsLsLLsLsLL
|LsLLsLL
|<nowiki>0|11</nowiki>
|<nowiki>2|4</nowiki>
| -0.0587
|Aeolian
|ssssssL
|<nowiki>0|6</nowiki>
|Magical seventh
|
|-
|-
| -4
| -1
|250/243 10/9 6/5 100/81 4/3 1000/729 40/27 8/5 400/243 16/9 50/27 2/1
|~ 12/11 6/5 15/11 3/2 13/8 9/5 2/1
|sLLsLsLLsLmL
|smLmsmm
|sLLsLsLLsLsL
|sLLLsLL
|<nowiki>4|7</nowiki>
|<nowiki>1|5</nowiki>
| -0.0338
|Phrygian
|ssLssss
|<nowiki>4|2</nowiki>
|Bright minor
|
|-
|-
| -3
|0
|250/243 10/9 6/5 100/81 4/3 25/18 3/2 125/81 5/3 9/5 50/27 2/1
|~ 10/9 6/5 4/3 3/2 5/3 9/5 2/1
|sLLsLmLsLLsL
|msmLmsm
|sLLsLsLsLLsL
|LsLLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|3</nowiki>
| -0.0302
|Dorian
|sssLsss
|<nowiki>3|3</nowiki>
|Dark minor
|
|-
|-
| -2
|1
|25/24 9/8 125/108 5/4 27/20 25/18 3/2 125/81 5/3 9/5 50/27 2/1
|~ 10/9 11/9 4/3 22/15 5/3 11/6 2/1
|mLsLLsLsLLsL
|mmsmLms
|sLsLLsLsLLsL
|LLsLLLs
|<nowiki>2|9</nowiki>
|<nowiki>5|1</nowiki>
| -0.0267
|Ionian
|-
|ssssLss
|  -1
|<nowiki>2|4</nowiki>
|27/25 10/9 6/5 100/81 4/3 36/25 40/27 8/5 5/3 9/5 50/27 2/1
|Bright diminished
|LsLsLLsLmLsL
|
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
| -0.0018
|-
|1
|27/25 10/9 6/5 5/4 27/20 25/18 3/2 81/50 5/3 9/5 50/27 2/1
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|0.0018
|-
|-
|2
|2
|27/25 10/9 6/5 162/125 4/3 36/25 40/27 8/5 216/125 16/9 48/25 2/1
|~ 9/8 5/4 15/11 3/2 5/3 9/5 2/1
|LsLLsLsLLsLm
|Lmsmmsm
|LsLLsLsLLsLs
|LLsLLsL
|<nowiki>9|2</nowiki>
|<nowiki>4|2</nowiki>
|0.0267
|Mixolydian
|Lssssss
|<nowiki>6|0</nowiki>
|Bright major
|
|-
|-
|3
|3
|27/25 10/9 6/5 162/125 4/3 36/25 3/2 81/50 5/3 9/5 243/125 2/1
|~ 10/9 5/4 11/8 3/2 5/3 11/6 2/1
|LsLLsLmLsLLs
|mLmsmms
|LsLLsLsLsLLs
|LLLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>6|0</nowiki>
|0.0302
|Lydian
|-
|sLsssss
|4
|<nowiki>5|1</nowiki>
|27/25 9/8 243/200 5/4 27/20 729/500 3/2 81/50 5/3 9/5 243/125 2/1
|Dark major
|LmLsLLsLsLLs
|
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|0.0338
|-
|5
|27/25 729/625 6/5 162/125 4/3 36/25 972/625 8/5 216/125 9/5 243/125 2/1
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|0.0587
|-
|6
|27/25 729/625 6/5 162/125 27/20 729/500 3/2 81/50 2187/1250 9/5 243/125 2/1
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|0.0622
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Rank-2 temperings (mode -3)
|+Rank-2 temperings (mode 2)
!Equivalence
!Equivalence
!Step pattern
!Step pattern
Line 3,239: Line 3,235:
|-
|-
|m = s
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[1L 6s|sssLsss]]
|[[Meantone family|Meantone]][12]
|[[Porcupine family#13-limit|Porcupine]][7]
|81/80
|40/39, 55/54, 66/65
|-
|-
|L = m
|L = m
|sLLsLLLsLLsL
|[[5L 2s|LsLLLsL]]
|[[Dimipent family|Diminished]][12] MODMOS
|[[Meantone family#Flattone|Flattone]][7]
|648/625
|45/44, 65/64, 81/80
|-
|L = s
|[[11L 1s|LLLLLsLLLLLL]]
|[[Ripple family|Ripple]][12]
|6561/6250
|-
|-
|L - m = m - s
|L - m = m - s
|dLLdLsLdLLdL
|LsLALsL
|Augmented[12] MODMOS
|[[Tetracot family#Subgroup temperament|Tetracot]][7] MODMOS
|128/125
|100/99, 144/143, 243/242
|}
{| class="wikitable"
|+Rank-1 temperings
!ET
|8
|[[12edo|12]]
|[[15edo|15]]
|[[19edo|19]]
|22f
|[[26edo|26]]
|27e
|[[34edo|34]]
|[[41edo|41]]
|-
|-
|s = 0
!Step sizes in ET
|[[7L 1s|LLLsLLLL]]
|(2, 1, 1)
|[[Porcupine family#Porcupine|Porcupine]][8]
|(2, 2, 1)
|250/243
|(3, 2, 2)
|(3, 3, 2)
|(4, 3, 3)
|(4, 4, 3)
|(5, 4, 3)
|(6, 5, 4)
|(7, 6, 5)
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 126/125)-12|(2/1, 3/2, 6/5: 126/125)[12] (Starling)]]=====
 
====[[SNS (2/1, 3/2, 6/5)-12|(2/1, 3/2, 6/5)[12]]]====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
!Steps in JI
!Steps in JI
!Step sizes in cents (TE)
!Step sizes in cents
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~15/14, 25/24~21/20, 250/243~28/27)
|(27/25, 25/24, 250/243)
|(123.5395c, 78.929c, 64.0225c)
|(133.2376c, 70.6724c, 49.1661c)
|}
|}
{| class="wikitable"
{| class="wikitable"
!Mode number
!Mode number
!Mode as simplest JI pre-image
!Mode in JI
!Step pattern
!Step pattern
!Meantone[12]
!Meantone[12]
Line 3,281: Line 3,292:
![[Mode height]]
![[Mode height]]
|-
|-
| -6
| -6
|~ 28/27 10/9 280/243 56/45 4/3 112/81 40/27 14/9 5/3 140/81 28/15 2/1
|250/243 10/9 2500/2187 100/81 4/3 1000/729 40/27 125/81 5/3 1250/729 50/27 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|sLsLLsLsLsLL  
|<nowiki>1|10</nowiki>
|<nowiki>1|10</nowiki>
| -0.0440
| -0.0622
|-
|-
| -5
| -5
|~ 28/27 10/9 7/6 5/4 35/27 7/5 3/2 14/9 5/3 140/81 28/15 2/1
|250/243 10/9 125/108 5/4 625/486 25/18 3/2 125/81 5/3 1250/729 50/27 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|<nowiki>0|11</nowiki>
| -0.0417
| -0.0587
|-
|-
| -4
| -4
|~ 28/27 10/9 6/5 56/45 4/3 112/81 40/27 8/5 224/135 16/9 28/15 2/1
|250/243 10/9 6/5 100/81 4/3 1000/729 40/27 8/5 400/243 16/9 50/27 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|<nowiki>4|7</nowiki>
| -0.0237
| -0.0338
|-
|-
| -3
| -3
|~ 28/27 10/9 6/5 56/45 4/3 7/5 3/2 14/9 5/3 9/5 28/15 2/1
|250/243 10/9 6/5 100/81 4/3 25/18 3/2 125/81 5/3 9/5 50/27 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|8</nowiki>
| -0.0214
| -0.0302
|-
|-
|  -2
|  -2
|~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 28/15 2/1
|25/24 9/8 125/108 5/4 27/20 25/18 3/2 125/81 5/3 9/5 50/27 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|<nowiki>2|9</nowiki>
|  -0.0191
|  -0.0267
|-
|-
|  -1
|  -1
|~ 15/14 10/9 6/5 56/45 4/3 10/7 40/27 8/5 5/3 9/5 28/15 2/1
|27/25 10/9 6/5 100/81 4/3 36/25 40/27 8/5 5/3 9/5 50/27 2/1
|LsLsLLsLmLsL
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|<nowiki>6|5</nowiki>
|  -0.0011
|  -0.0018
|-
|-
|1
|1
|~ 15/14 10/9 6/5 5/4 27/20 7/5 3/2 45/28 5/3 9/5 28/15 2/1
|27/25 10/9 6/5 5/4 27/20 25/18 3/2 81/50 5/3 9/5 50/27 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|<nowiki>5|6</nowiki>
|0.0011
|0.0018
|-
|-
|2
|2
|~ 15/14 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1
|27/25 10/9 6/5 162/125 4/3 36/25 40/27 8/5 216/125 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|<nowiki>9|2</nowiki>
|0.0191
|0.0267
|-
|-
|3
|3
|~ 15/14 10/9 6/5 9/7 4/3 10/7 3/2 45/28 5/3 9/5 27/14 2/1
|27/25 10/9 6/5 162/125 4/3 36/25 3/2 81/50 5/3 9/5 243/125 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>8|3</nowiki>
|0.0214
|0.0302
|-
|-
|4
|4
|~ 15/14 9/8 135/112 5/4 27/20 81/56 3/2 45/28 5/3 9/5 27/14 2/1
|27/25 9/8 243/200 5/4 27/20 729/500 3/2 81/50 5/3 9/5 243/125 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|<nowiki>7|4</nowiki>
|0.0237
|0.0338
|-
|-
|5
|5
|~ 15/14 81/70 6/5 9/7 4/3 10/7 54/35 8/5 12/7 9/5 27/14 2/1
|27/25 729/625 6/5 162/125 4/3 36/25 972/625 8/5 216/125 9/5 243/125 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|<nowiki>11|0</nowiki>
|0.0417
|0.0587
|-
|-
|6
|6
|~ 15/14 81/70 6/5 9/7 27/20 81/56 3/2 45/28 243/140 9/5 27/14 2/1
|27/25 729/625 6/5 162/125 27/20 729/500 3/2 81/50 2187/1250 9/5 243/125 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|<nowiki>10|1</nowiki>
|0.0440
|0.0622
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Rank-2 temperings (mode -3)
|+Rank-2 temperings (mode -3)
!Equivalence
! Equivalence
!Step pattern
! Step pattern
!Scale
! Scale
!Comma list
! Comma list
|-
| m = s
| [[7L 5s|sLLsLsLsLLsL]]
| [[Meantone]][12]
| 81/80
|-
|-
|m = s
| L = m
|[[7L 5s|sLLsLsLsLLsL]]
| sLLsLLLsLLsL
|[[Meantone family|Meantone]][12]
| [[Diminished]][12] MODMOS
|81/80, 126/125
| 648/625
|-
|-
|L = m
| L = s
|sLLsLLLsLLsL
| [[11L 1s|LLLLLsLLLLLL]]
|[[Diminished]][12] MODMOS
| [[Ripple]][12]
|36/35, 50/49
| 6561/6250
|-
|-
|L - m = m - s
| L - m = m - s
|dLLdLsLdLLdL
| dLLdLsLdLLdL
|Augene[12] MODMOS
| [[Augmented]][12] modmos
|64/63, 126/125  
| 128/125
|-
|-
|s = 0
| s = 0
|[[7L 1s|LLLsLLLL]]
| [[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
| [[Porcupine]][8]
|28/27, 126/125
| 250/243
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 126/125)-12|(2/1, 3/2, 6/5: 126/125)[12] (Starling)]]=====
{| class="wikitable"
{| class="wikitable"
|+Rank-1 temperings
!Step signature
!ET
!Steps in JI
|[[15edo|15]]
!Step sizes in cents (TE)
|[[16edo|16]]
|[[19edo|19]]
|[[27edo|27]]
|[[31edo|31]]
|[[46edo|46]]
|[[50edo|50]]
|[[58edo|58]]
|[[77edo|77]]
|-
|-
!Step sizes in ET
|7L 1m 4s
|(2, 1, 0)
|(27/25~15/14, 25/24~21/20, 250/243~28/27)
|(1, 1, 2)
|(2, 1, 1)
|(3, 2, 1)
|(3, 2, 2)
|(5, 3, 2)
|(5, 3, 3)
|(6, 4, 3)
|(8, 5, 4)
|}
=====[[SNS (2/1, 3/2, 6/5: 126/125, 196/195)-12|(2/1, 3/2, 6/5: 126/125, 196/195)[12]]]=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents (TE)
|-
|7L 1m 4s
|(27/25~15/14~14/13, 25/24~21/20, 250/243~28/27~65/63)
|(123.5395c, 78.929c, 64.0225c)
|(123.5395c, 78.929c, 64.0225c)
|}
|}
Line 3,435: Line 3,428:
|-
|-
|  -6
|  -6
|~ 28/27 10/9 52/45 26/21 4/3 104/75 40/27 14/9 5/3 26/15 13/7 2/1
|~ 28/27 10/9 280/243 56/45 4/3 112/81 40/27 14/9 5/3 140/81 28/15 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|sLsLLsLsLsLL
|<nowiki>1|10</nowiki>
|<nowiki>1|10</nowiki>
|  -0.0465
|  -0.0440
|-
|-
|  -5
|  -5
|~ 28/27 10/9 7/6 5/4 13/10 7/5 3/2 14/9 5/3 26/15 13/7 2/1
|~ 28/27 10/9 7/6 5/4 35/27 7/5 3/2 14/9 5/3 140/81 28/15 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|<nowiki>0|11</nowiki>
|  -0.0433
|  -0.0417
|-
|-
|  -4
|  -4
|~ 28/27 10/9 6/5 26/21 4/3 104/75 40/27 8/5 104/63 16/9 13/7 2/1
|~ 28/27 10/9 6/5 56/45 4/3 112/81 40/27 8/5 224/135 16/9 28/15 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|<nowiki>4|7</nowiki>
|  -0.0256
|  -0.0237
|-
|-
|  -3
|  -3
|~ 28/27 10/9 6/5 26/21 4/3 7/5 3/2 14/9 5/3 9/5 13/7 2/1
|~ 28/27 10/9 6/5 56/45 4/3 7/5 3/2 14/9 5/3 9/5 28/15 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|8</nowiki>
|  -0.0225
|  -0.0214
|-
|-
|  -2
|  -2
|~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 13/7 2/1
|~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 28/15 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|<nowiki>2|9</nowiki>
|  -0.0193
|  -0.0191
|-
|-
|  -1
|  -1
|~ 14/13 10/9 6/5 26/21 4/3 10/7 40/27 8/5 5/3 9/5 13/7 2/1
|~ 15/14 10/9 6/5 56/45 4/3 10/7 40/27 8/5 5/3 9/5 28/15 2/1
|LsLsLLsLmLsL
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|<nowiki>6|5</nowiki>
|  -0.0016
|  -0.0011
|-
|-
|1
|1
|~ 14/13 10/9 6/5 5/4 27/20 7/5 3/2 21/13 5/3 9/5 13/7 2/1
|~ 15/14 10/9 6/5 5/4 27/20 7/5 3/2 45/28 5/3 9/5 28/15 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|<nowiki>5|6</nowiki>
|0.0016
|0.0011
|-
|-
|2
|2
|~ 14/13 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1
|~ 15/14 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|<nowiki>9|2</nowiki>
|0.0193
|0.0191
|-
|-
|3
|3
|~ 14/13 10/9 6/5 9/7 4/3 10/7 3/2 21/13 5/3 9/5 27/14 2/1
|~ 15/14 10/9 6/5 9/7 4/3 10/7 3/2 45/28 5/3 9/5 27/14 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>8|3</nowiki>
|0.0225
|0.0214
|-
|-
|4
|4
|~ 14/13 9/8 63/52 5/4 27/20 75/52 3/2 21/13 5/3 9/5 27/14 2/1
|~ 15/14 9/8 135/112 5/4 27/20 81/56 3/2 45/28 5/3 9/5 27/14 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|<nowiki>7|4</nowiki>
|0.0256
|0.0237
|-
|-
|5
|5
|~ 14/13 15/13 6/5 9/7 4/3 10/7 20/13 8/5 12/7 9/5 27/14 2/1
|~ 15/14 81/70 6/5 9/7 4/3 10/7 54/35 8/5 12/7 9/5 27/14 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|<nowiki>11|0</nowiki>
|0.0433
|0.0417
|-
|-
|6
|6
|~ 14/13 15/13 6/5 9/7 27/20 75/52 3/2 21/13 45/26 9/5 27/14 2/1
|~ 15/14 81/70 6/5 9/7 27/20 81/56 3/2 45/28 243/140 9/5 27/14 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|<nowiki>10|1</nowiki>
|0.0465
|0.0440
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 3,527: Line 3,520:
|m = s
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meanpop]][12]
|[[Meantone family|Meantone]][12]
|81/80, 105/104, 126/125
|81/80, 126/125
|-
|L = m
|sLLsLLLsLLsL
|[[Diminished]][12] MODMOS
|36/35, 50/49
|-
|L - m = m - s
|dLLdLsLdLLdL
|[[Augmented family#Augene|Augene]][12] MODMOS
|64/63, 126/125
|-
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
|28/27, 126/125
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Rank-1 temperings
|+Rank-1 temperings
!ET
!ET
|15f
|[[15edo|15]]
|[[16edo|16]]
|[[19edo|19]]
|[[19edo|19]]
|[[27edo|27]]
|[[27edo|27]]
Line 3,544: Line 3,553:
!Step sizes in ET
!Step sizes in ET
|(2, 1, 0)
|(2, 1, 0)
|(1, 1, 2)
|(2, 1, 1)
|(2, 1, 1)
|(3, 2, 1)
|(3, 2, 1)
Line 3,552: Line 3,562:
|(8, 5, 4)
|(8, 5, 4)
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 100/99)-12|(2/1, 3/2, 6/5: 100/99)[12] (No-7 Ptolemismic)]]=====
=====[[SNS (2/1, 3/2, 6/5: 126/125, 196/195)-12|(2/1, 3/2, 6/5: 126/125, 196/195)[12]]]=====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
Line 3,559: Line 3,569:
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~12/11, 25/24~33/32, 250/243~55/54~121/120)
|(27/25~15/14~14/13, 25/24~21/20, 250/243~28/27~65/63)
|(146.6352c, 63.1434c, 27.4197c)
|(123.5395c, 78.929c, 64.0225c)
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 3,570: Line 3,580:
![[Mode height]]
![[Mode height]]
|-
|-
| -6
| -6
|~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 55/36 5/3 121/72 11/6 2/1
|~ 28/27 10/9 52/45 26/21 4/3 104/75 40/27 14/9 5/3 26/15 13/7 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL  
|sLsLLsLsLsLL
|<nowiki>1|10</nowiki>
|<nowiki>1|10</nowiki>
| -0.0899
| -0.0465
|-
|-
| -5
| -5
|~ 55/54 10/9 55/48 5/4 121/96 11/8 3/2 55/36 5/3 121/72 11/6 2/1
|~ 28/27 10/9 7/6 5/4 13/10 7/5 3/2 14/9 5/3 26/15 13/7 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|<nowiki>0|11</nowiki>
| -0.0819
| -0.0433
|-
|-
| -4
| -4
|~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|~ 28/27 10/9 6/5 26/21 4/3 104/75 40/27 8/5 104/63 16/9 13/7 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|<nowiki>4|7</nowiki>
| -0.0510
| -0.0256
|-
|-
| -3
| -3
|~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 55/36 5/3 9/5 11/6 2/1
|~ 28/27 10/9 6/5 26/21 4/3 7/5 3/2 14/9 5/3 9/5 13/7 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|8</nowiki>
| -0.0430
| -0.0225
|-
|-
|  -2
|  -2
|~ 25/24 9/8 55/48 5/4 15/11 11/8 3/2 55/36 5/3 9/5 11/6 2/1
|~ 21/20 9/8 7/6 5/4 27/20 7/5 3/2 14/9 5/3 9/5 13/7 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|<nowiki>2|9</nowiki>
|  -0.0349
|  -0.0193
|-
|-
|  -1
|  -1
|~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1
|~ 14/13 10/9 6/5 26/21 4/3 10/7 40/27 8/5 5/3 9/5 13/7 2/1
|LsLsLLsLmLsL
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|<nowiki>6|5</nowiki>
|  -0.0040
|  -0.0016
|-
|-
|1
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 18/11 5/3 9/5 11/6 2/1
|~ 14/13 10/9 6/5 5/4 27/20 7/5 3/2 21/13 5/3 9/5 13/7 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|<nowiki>5|6</nowiki>
|0.0040
|0.0016
|-
|-
|2
|2
|~ 12/11 10/9 6/5 72/55 4/3 16/11 22/15 8/5 96/55 16/9 48/25 2/1
|~ 14/13 10/9 6/5 9/7 4/3 10/7 40/27 8/5 12/7 16/9 40/21 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|<nowiki>9|2</nowiki>
|0.0349
|0.0193
|-
|-
|3
|3
|~ 12/11 10/9 6/5 72/55 4/3 16/11 3/2 18/11 5/3 9/5 108/55 2/1
|~ 14/13 10/9 6/5 9/7 4/3 10/7 3/2 21/13 5/3 9/5 27/14 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>8|3</nowiki>
|0.0430
|0.0225
|-
|-
|4
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 108/55 2/1
|~ 14/13 9/8 63/52 5/4 27/20 75/52 3/2 21/13 5/3 9/5 27/14 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|<nowiki>7|4</nowiki>
|0.0510
|0.0256
|-
|-
|5
|5
|~ 12/11 144/121 6/5 72/55 4/3 16/11 192/121 8/5 96/55 9/5 108/55 2/1
|~ 14/13 15/13 6/5 9/7 4/3 10/7 20/13 8/5 12/7 9/5 27/14 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|<nowiki>11|0</nowiki>
|0.0819
|0.0433
|-
|-
|6
|6
|~ 12/11 144/121 6/5 72/55 15/11 81/55 3/2 18/11 216/121 9/5 108/55 2/1
|~ 14/13 15/13 6/5 9/7 27/20 75/52 3/2 21/13 45/26 9/5 27/14 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|<nowiki>10|1</nowiki>
|0.0899
|0.0465
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 3,663: Line 3,673:
|m = s
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meanenneadecal]][12] or [[Meantone family#Flattone|Flattone]][12]
|[[Meanpop]][12]
|45/44, 81/80
|81/80, 105/104, 126/125
|-
|L = m
|sLLsLLLsLLsL
|[[Dimipent family|Diminished]][12] MODMOS
|100/99, 128/121
|-
|L - m = m - s
|dLLdLsLdLLdL
|Augene[12] MODMOS
|100/99, 128/125
|-
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[Porcupine family#Porkypine|Porkypine]][8]
|55/54, 100/99
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Rank-1 temperings
|+Rank-1 temperings
!ET
!ET
|[[15edo|15]]
|15f
|[[19edo|19]]
|[[19edo|19]]
|[[22edo|22]]
|[[27edo|27]]
|[[26edo|26]]
|[[31edo|31]]
|27e
|[[46edo|46]]
|[[29edo|29]]
|[[50edo|50]]
|[[34edo|34]]
|[[58edo|58]]
|[[37edo|37]]
|[[77edo|77]]
|[[41edo|41]]
|-
|-
!Step sizes in ET
!Step sizes in ET
|(2, 1, 0)
|(2, 1, 0)
|(2, 1, 1)
|(2, 1, 1)
|(3, 1, 0)
|(3, 1, 1)
|(3, 2, 1)
|(3, 2, 1)
|(4, 1, 0)
|(3, 2, 2)
|(4, 2, 1)
|(5, 3, 2)
|(5, 2, 0)
|(5, 3, 3)
|(5, 2, 1)
|(6, 4, 3)
|(8, 5, 4)
|}
|}
=====(2/1, 3/2, 6/5: 100/99, 385/384)[12] ([[Keemic family#Supermagic|Supermagic]])=====
=====[[SNS (2/1, 3/2, 6/5: 100/99)-12|(2/1, 3/2, 6/5: 100/99)[12] (No-7 Ptolemismic)]]=====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
Line 3,713: Line 3,705:
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~12/11~35/32, 25/24~33/32, 250/243~55/54~64/63~121/120)
|(27/25~12/11, 25/24~33/32, 250/243~55/54~121/120)
|(149.51592c, 58.8799c, 23.6254c)
|(146.6352c, 63.1434c, 27.4197c)
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 3,724: Line 3,716:
![[Mode height]]
![[Mode height]]
|-
|-
| -6
| -6
|~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 32/21 5/3 121/72 11/6 2/1
|~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 55/36 5/3 121/72 11/6 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|sLsLLsLsLsLL  
|<nowiki>1|10</nowiki>
|<nowiki>1|10</nowiki>
|  
| -0.0899
|-
|-
| -5
| -5
|~ 55/54 10/9 8/7 5/4 121/96 11/8 3/2 32/21 5/3 121/72 11/6 2/1
|~ 55/54 10/9 55/48 5/4 121/96 11/8 3/2 55/36 5/3 121/72 11/6 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|<nowiki>0|11</nowiki>
|  
| -0.0819
|-
|-
| -4
| -4
|~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|<nowiki>4|7</nowiki>
|  
| -0.0510
|-
|-
| -3
| -3
|~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 32/21 5/3 9/5 11/6 2/1
|~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 55/36 5/3 9/5 11/6 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|8</nowiki>
|  
| -0.0430
|-
|-
|  -2
|  -2
|~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 32/21 5/3 9/5 11/6 2/1
|~ 25/24 9/8 55/48 5/4 15/11 11/8 3/2 55/36 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|<nowiki>2|9</nowiki>
|  
| -0.0349
|-
|-
|  -1
|  -1
Line 3,764: Line 3,756:
|LsLsLLsLsLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|<nowiki>6|5</nowiki>
|  
| -0.0040
|-
|-
|1
|1
Line 3,771: Line 3,763:
|LsLsLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|<nowiki>5|6</nowiki>
|
|0.0040
|-
|-
|2
|2
|~ 12/11 10/9 6/5 21/16 4/3 16/11 22/15 8/5 7/4 16/9 48/25 2/1
|~ 12/11 10/9 6/5 72/55 4/3 16/11 22/15 8/5 96/55 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|<nowiki>9|2</nowiki>
|
|0.0349
|-
|-
|3
|3
|~ 12/11 10/9 6/5 21/16 4/3 16/11 3/2 18/11 5/3 9/5 63/32 2/1
|~ 12/11 10/9 6/5 72/55 4/3 16/11 3/2 18/11 5/3 9/5 108/55 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>8|3</nowiki>
|
|0.0430
|-
|-
|4
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 63/ 2/1
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 108/55 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|<nowiki>7|4</nowiki>
|
|0.0510
|-
|-
|5
|5
|~ 12/11 144/121 6/5 21/16 4/3 16/11 192/121 8/5 7/4 9/5 63/32 2/1
|~ 12/11 144/121 6/5 72/55 4/3 16/11 192/121 8/5 96/55 9/5 108/55 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|<nowiki>11|0</nowiki>
|
|0.0819
|-
|-
|6
|6
|~ 12/11 144/121 6/5 21/16 15/11 81/55 3/2 18/11 216/121 9/5 63/32 2/1
|~ 12/11 144/121 6/5 72/55 15/11 81/55 3/2 18/11 216/121 9/5 108/55 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|<nowiki>10|1</nowiki>
|
|0.0899
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Rank-2 temperings (mode -3)
|+Rank-2 temperings (mode -3)
!Equivalence
! Equivalence
!Step pattern
! Step pattern
!Scale
! Scale
!Comma list
! Comma list
|-
| m = s
| [[7L 5s|sLLsLsLsLLsL]]
| [[Meanenneadecal]][12] or [[Flattone]][12]
| 45/44, 81/80
|-
| L = m
| sLLsLLLsLLsL
| [[Diminished]][12] modmos
| 100/99, 128/121
|-
|-
|m = s
| L - m = m - s
|[[7L 5s|sLLsLsLsLLsL]]
| dLLdLsLdLLdL
|[[Meantone family#Flattone|Flattone]][12]
| [[Augene]][12] modmos
|45/44, 81/80, 385/384
| 100/99, 128/125
|-
|-
|s = 0
| s = 0
|[[7L 1s|LLLsLLLL]]
| [[7L 1s|LLLsLLLL]]
|[[Porcupine family#Septimal porcupine|Porcupine]][8]
| [[Porcupine]][8]
|55/54, 64/63, 100/99
| 55/54, 100/99
|}
|}


Line 3,833: Line 3,835:
|[[22edo|22]]
|[[22edo|22]]
|[[26edo|26]]
|[[26edo|26]]
|27e
|[[29edo|29]]
|[[34edo|34]]
|[[34edo|34]]
|[[37edo|37]]
|[[41edo|41]]
|[[41edo|41]]
|[[104edo|104]]
|-
|-
!Step sizes in ET
!Step sizes in ET
Line 3,842: Line 3,846:
|(3, 1, 0)
|(3, 1, 0)
|(3, 1, 1)
|(3, 1, 1)
|(3, 2, 1)
|(4, 1, 0)
|(4, 2, 1)
|(4, 2, 1)
|(5, 2, 0)
|(5, 2, 1)
|(5, 2, 1)
|(13, 5, 2)
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 100/99, 105/104, 144/143)-12|(2/1, 3/2, 6/5: 100/99, 105/104, 144/143)[12]]] ([[Keemic family#Supermagic|Supermagic]])=====
 
===== (2/1, 3/2, 6/5: 100/99, 144/143)[12] (No-7 Ptolemismic) =====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
Line 3,853: Line 3,860:
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~12/11~13/12~35/32, 25/24~27/26~33/32, 250/243~40/39~55/54~64/63~121/120)
|(27/25~12/11~13/12, 25/24~33/32~27/26, 250/243~55/54~121/120~40/39)
|(145.47082c, 58.39270c, 30.85183c)
|[http://x31eq.com/cgi-bin/rt.cgi?ets=7%261ce%264f&limit=2.3.5.11.13 (142.77537c, 66.76626c, 33.11646c)]
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 3,872: Line 3,879:
|-
|-
|  -5
|  -5
|~ 40/39 10/9 8/7 5/4 33/26 11/8 3/2 20/13 5/3 22/13 11/6 2/1
|~ 40/39 10/9 15/13 5/4 33/26 11/8 3/2 20/13 5/3 22/13 11/6 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
Line 3,893: Line 3,900:
|-
|-
|  -2
|  -2
|~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 20/13 5/3 9/5 11/6 2/1
|~ 25/24 9/8 15/13 5/4 15/11 11/8 3/2 20/13 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
Line 3,900: Line 3,907:
|-
|-
|  -1
|  -1
|~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1
|~ 12/11 10/9 6/5 11/9 4/3 13/9 22/15 8/5 5/3 9/5 11/6 2/1
|LsLsLLsLmLsL
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|LsLsLLsLsLsL
Line 3,907: Line 3,914:
|-
|-
|1
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 18/11 5/3 9/5 11/6 2/1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 13/8 5/3 9/5 11/6 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
Line 3,914: Line 3,921:
|-
|-
|2
|2
|~ 12/11 10/9 6/5 13/10 4/3 16/11 22/15 8/5 7/4 16/9 48/25 2/1
|~ 12/11 10/9 6/5 13/10 4/3 13/9 22/15 8/5 26/15 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
Line 3,921: Line 3,928:
|-
|-
|3
|3
|~ 12/11 10/9 6/5 13/10 4/3 16/11 3/2 18/11 5/3 9/5 39/20 2/1
|~ 12/11 10/9 6/5 13/10 4/3 13/9 3/2 13/8 5/3 9/5 39/20 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
Line 3,928: Line 3,935:
|-
|-
|4
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 39/20 2/1
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 13/8 5/3 9/5 39/20 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
Line 3,935: Line 3,942:
|-
|-
|5
|5
|~ 12/11 13/11 6/5 13/10 4/3 16/11 52/33 8/5 7/4 9/5 39/20 2/1
|~ 12/11 13/11 6/5 13/10 4/3 13/9 52/33 8/5 26/15 9/5 39/20 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
Line 3,942: Line 3,949:
|-
|-
|6
|6
|~ 12/11 13/11 6/5 13/10 15/11 81/55 3/2 18/11 39/22 9/5 39/20 2/1
|~ 12/11 13/11 6/5 13/10 15/11 81/55 3/2 13/8 39/22 9/5 39/20 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
Line 3,958: Line 3,965:
|[[7L 5s|sLLsLsLsLLsL]]
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meantone family#Flattone|Flattone]][12]
|[[Meantone family#Flattone|Flattone]][12]
|45/44, 65/64, 78/77, 81/80
|45/44, 65/64, 81/80
|-
|-
|s = 0
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[7L 1s|LLLsLLLL]]
|[[Porcupine family#Septimal porcupine|Porcupine]][8]
|[[Porcupine family#13-limit|Porcupine]][8]
|40/39, 55/54, 64/63, 66/65
|40/39, 55/54, 66/65
|}
|}


Line 3,973: Line 3,980:
|22f
|22f
|[[26edo|26]]
|[[26edo|26]]
|27e
|[[34edo|34]]
|[[34edo|34]]
|[[41edo|41]]
|[[41edo|41]]
Line 3,981: Line 3,989:
|(3, 1, 0)
|(3, 1, 0)
|(3, 1, 1)
|(3, 1, 1)
|(3, 2, 1)
|(4, 2, 1)
|(4, 2, 1)
|(5, 2, 1)
|(5, 2, 1)
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 56/55, 100/99)-12|(2/1, 3/2, 6/5: 56/55, 100/99)[12] (Thrasher)]]=====
 
=====(2/1, 3/2, 6/5: 100/99, 385/384)[12] ([[Keemic family#Supermagic|Supermagic]])=====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
Line 3,991: Line 4,001:
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~15/14~12/11, 25/24~21/20~33/32, 250/243~28/27~55/54)
|(27/25~12/11~35/32, 25/24~33/32, 250/243~55/54~64/63~121/120)
|(132.5782c, 82.867c, 46.5074c)
|(149.51592c, 58.8799c, 23.6254c)
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 4,003: Line 4,013:
|-
|-
|  -6
|  -6
|~ 28/27 10/9 121/108 11/9 4/3 110/81 22/15 14/9 5/3 121/72 11/6 2/1
|~ 55/54 10/9 121/108 11/9 4/3 110/81 22/15 32/21 5/3 121/72 11/6 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|sLsLLsLsLsLL
|<nowiki>1|10</nowiki>
|<nowiki>1|10</nowiki>
| -0.0671
|  
|-
|-
|  -5
|  -5
|~ 28/27 10/9 7/6 5/4 121/96 11/8 3/2 14/9 5/3 121/72 11/6 2/1
|~ 55/54 10/9 8/7 5/4 121/96 11/8 3/2 32/21 5/3 121/72 11/6 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|<nowiki>0|11</nowiki>
| -0.0526
|  
|-
|-
|  -4
|  -4
|~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|~ 55/54 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|<nowiki>4|7</nowiki>
| -0.0445
|  
|-
|-
|  -3
|  -3
|~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|~ 55/54 10/9 6/5 11/9 4/3 11/8 3/2 32/21 5/3 9/5 11/6 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|<nowiki>3|8</nowiki>
| -0.0299
|  
|-
|-
|  -2
|  -2
|~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 32/21 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|<nowiki>2|9</nowiki>
| -0.0154
|  
|-
|-
|  -1
|  -1
Line 4,042: Line 4,052:
|LsLsLLsLsLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|<nowiki>6|5</nowiki>
| -0.0073
|  
|-
|-
|1
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 18/11 5/3 9/5 11/6 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|<nowiki>5|6</nowiki>
|0.0073
|
|-
|-
|2
|2
|~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1
|~ 12/11 10/9 6/5 21/16 4/3 16/11 22/15 8/5 7/4 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|<nowiki>9|2</nowiki>
|0.0154
|
|-
|-
|3
|3
|~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1
|~ 12/11 10/9 6/5 21/16 4/3 16/11 3/2 18/11 5/3 9/5 63/32 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|<nowiki>8|3</nowiki>
|0.0299
|
|-
|-
|4
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 63/ 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|<nowiki>7|4</nowiki>
|0.0445
|
|-
|-
|5
|5
|~ 12/11 144/121 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1
|~ 12/11 144/121 6/5 21/16 4/3 16/11 192/121 8/5 7/4 9/5 63/32 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|<nowiki>11|0</nowiki>
|0.0526
|
|-
|-
|6
|6
|~ 12/11 144/121 6/5 9/7 15/11 81/55 3/2 81/50 216/121 9/5 27/14 2/1
|~ 12/11 144/121 6/5 21/16 15/11 81/55 3/2 18/11 216/121 9/5 63/32 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|<nowiki>10|1</nowiki>
|0.0671
|
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 4,095: Line 4,105:
|m = s
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meanenneadecal]][12]
|[[Meantone family#Flattone|Flattone]][12]
|45/44, 56/55, 81/80
|45/44, 81/80, 385/384
|-
|L = m
|sLLsLLLsLLsL
|[[Jubilismic clan#Diminished|Diminished]][12] MODMOS
|36/35, 50/49, 56/55
|-
|-
|s = 0
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
|[[Porcupine family#11-limit|Porcupine]][8]
|28/27, 55/54, 77/75
|55/54, 64/63, 100/99
|}
|}


Line 4,114: Line 4,119:
|[[15edo|15]]
|[[15edo|15]]
|[[19edo|19]]
|[[19edo|19]]
|27e
|[[22edo|22]]
|[[26edo|26]]
|[[34edo|34]]
|[[34edo|34]]
|[[41edo|41]]
|[[104edo|104]]
|-
|-
!Step sizes in ET
!Step sizes in ET
|(2, 1, 0)
|(2, 1, 0)
|(2, 1, 1)
|(2, 1, 1)
|(3, 2, 1)
|(3, 1, 0)
|(3, 1, 1)
|(4, 2, 1)
|(4, 2, 1)
|(5, 2, 1)
|(13, 5, 2)
|}
|}
=====(2/1, 3/2, 6/5: 56/55, 91/90, 100/99)[12] (Thrasher)=====
=====[[SNS (2/1, 3/2, 6/5: 100/99, 105/104, 144/143)-12|(2/1, 3/2, 6/5: 100/99, 105/104, 144/143)[12]]] ([[Keemic family#Supermagic|Supermagic]])=====
{| class="wikitable"
{| class="wikitable"
!Step signature
!Step signature
Line 4,130: Line 4,141:
|-
|-
|7L 1m 4s
|7L 1m 4s
|(27/25~15/14~12/11~13/12, 25/24~21/20~33/32~27/26, 250/243~28/27~55/54~40/39)
|(27/25~12/11~13/12~35/32, 25/24~27/26~33/32, 250/243~40/39~55/54~64/63~121/120)
|
|(145.47082c, 58.39270c, 30.85183c)
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 4,142: Line 4,153:
|-
|-
|  -6
|  -6
|~ 28/27 10/9 44/39 11/9 4/3 110/81 22/15 14/9 5/3 22/13 11/6 2/1
|~ 40/39 10/9 44/39 11/9 4/3 110/81 22/15 20/13 5/3 22/13 11/6 2/1
|sLsLLsLmLsLL
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|sLsLLsLsLsLL
Line 4,149: Line 4,160:
|-
|-
|  -5
|  -5
|~ 28/27 10/9 7/6 5/4 33/26 11/8 3/2 14/9 5/3 121/72 11/6 2/1
|~ 40/39 10/9 8/7 5/4 33/26 11/8 3/2 20/13 5/3 22/13 11/6 2/1
|sLmLsLLsLsLL
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|sLsLsLLsLsLL
Line 4,156: Line 4,167:
|-
|-
|  -4
|  -4
|~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|~ 40/39 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|sLLsLsLLsLsL
Line 4,163: Line 4,174:
|-
|-
|  -3
|  -3
|~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|~ 40/39 10/9 6/5 11/9 4/3 11/8 3/2 20/13 5/3 9/5 11/6 2/1
|sLLsLmLsLLsL
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|sLLsLsLsLLsL
Line 4,170: Line 4,181:
|-
|-
|  -2
|  -2
|~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|~ 25/24 9/8 8/7 5/4 15/11 11/8 3/2 20/13 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|sLsLLsLsLLsL
Line 4,177: Line 4,188:
|-
|-
|  -1
|  -1
|~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1
|~ 12/11 10/9 6/5 11/9 4/3 13/9 22/15 8/5 5/3 9/5 11/6 2/1
|LsLsLLsLmLsL
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|LsLsLLsLsLsL
Line 4,184: Line 4,195:
|-
|-
|1
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 13/8 5/3 9/5 11/6 2/1
|LsLmLsLLsLsL
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|LsLsLsLLsLsL
Line 4,191: Line 4,202:
|-
|-
|2
|2
|~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1
|~ 12/11 10/9 6/5 13/10 4/3 13/9 22/15 8/5 7/4 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|LsLLsLsLLsLs
Line 4,198: Line 4,209:
|-
|-
|3
|3
|~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1
|~ 12/11 10/9 6/5 13/10 4/3 13/9 3/2 13/8 5/3 9/5 39/20 2/1
|LsLLsLmLsLLs
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|LsLLsLsLsLLs
Line 4,205: Line 4,216:
|-
|-
|4
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 13/8 5/3 9/5 39/20 2/1
|LmLsLLsLsLLs
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|LsLsLLsLsLLs
Line 4,212: Line 4,223:
|-
|-
|5
|5
|~ 12/11 13/11 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1
|~ 12/11 13/11 6/5 13/10 4/3 13/9 52/33 8/5 7/4 9/5 39/20 2/1
|LLsLsLLsLmLs
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|LLsLsLLsLsLs
Line 4,219: Line 4,230:
|-
|-
|6
|6
|~ 12/11 13/11 6/5 9/7 15/11 81/55 3/2 81/50 39/22 9/5 27/14 2/1
|~ 12/11 13/11 6/5 13/10 15/11 81/55 3/2 13/8 39/22 9/5 39/20 2/1
|LLsLmLsLLsLs
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|LLsLsLsLLsLs
Line 4,234: Line 4,245:
|m = s
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meantone family#Vincenzo|Vincenzo]][12]
|[[Meantone family#Flattone|Flattone]][12]
|45/44, 56/55, 65/64, 81/80
|45/44, 65/64, 78/77, 81/80
|-
|-
|s = 0
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
|[[Porcupine family#13-limit|Porcupine]][8]
|28/27, 40/39, 55/54, 66/65
|40/39, 55/54, 64/63, 66/65
|}
|}


Line 4,248: Line 4,259:
|[[15edo|15]]
|[[15edo|15]]
|[[19edo|19]]
|[[19edo|19]]
|27e
|22f
|[[26edo|26]]
|[[34edo|34]]
|[[34edo|34]]
|[[41edo|41]]
|-
|-
!Step sizes in ET
!Step sizes in ET
|(2, 1, 0)
|(2, 1, 0)
|(2, 1, 1)
|(2, 1, 1)
|(3, 2, 1)
|(3, 1, 0)
|(3, 1, 1)
|(4, 2, 1)
|(4, 2, 1)
|(5, 2, 1)
|}
=====[[SNS (2/1, 3/2, 6/5: 56/55, 100/99)-12|(2/1, 3/2, 6/5: 56/55, 100/99)[12] (Thrasher)]]=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents (TE)
|-
|7L 1m 4s
|(27/25~15/14~12/11, 25/24~21/20~33/32, 250/243~28/27~55/54)
|(132.5782c, 82.867c, 46.5074c)
|}
{| class="wikitable"
!Mode number
!Mode as simplest JI pre-image
!Step pattern
!Meantone[12]
!UDP
![[Mode height]]
|-
|  -6
|~ 28/27 10/9 121/108 11/9 4/3 110/81 22/15 14/9 5/3 121/72 11/6 2/1
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|<nowiki>1|10</nowiki>
|  -0.0671
|-
|  -5
|~ 28/27 10/9 7/6 5/4 121/96 11/8 3/2 14/9 5/3 121/72 11/6 2/1
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|  -0.0526
|-
|  -4
|~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|  -0.0445
|-
|  -3
|~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|  -0.0299
|-
|  -2
|~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|  -0.0154
|-
|  -1
|~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|  -0.0073
|-
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|0.0073
|-
|2
|~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|0.0154
|-
|3
|~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|0.0299
|-
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|0.0445
|-
|5
|~ 12/11 144/121 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|0.0526
|-
|6
|~ 12/11 144/121 6/5 9/7 15/11 81/55 3/2 81/50 216/121 9/5 27/14 2/1
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|0.0671
|}
{| class="wikitable"
|+Rank-2 temperings (mode -3)
!Equivalence
!Step pattern
!Scale
!Comma list
|-
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meanenneadecal]][12]
|45/44, 56/55, 81/80
|-
|L = m
|sLLsLLLsLLsL
|[[Jubilismic clan#Diminished|Diminished]][12] MODMOS
|36/35, 50/49, 56/55
|-
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
|28/27, 55/54, 77/75
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 4375/4374)-12|(2/1, 3/2, 6/5: 4375/4374)[12] (Ragismic)]]=====
7L 1m 4s = (~27/25, ~25/24, 250/243~36/35) = (133.4115c, 70.5569c, 48.8911c) TE
~ 27/25 10/9 6/5 35/27 4/3 36/25 3/2 81/50 5/3 9/5 35/18 2/1 as LsLLsLmLsLLs
m = s -> LsLLsLsLsLLs Falttone[12]; L = m -> LsLLsLLLsLLs MODMOS; L = s -> LLLLLLsLLLLL; s = 0 -> LLLLsLLL Hystrix[8]
19-ET: (2, 1, 1); 53-ET: (6, 3, 2); 72-ET: (8, 4, 3); 99-ET: (11, 6, 4); 118-ET: (13, 7, 5); 152-ET: (17, 9, 6); 171-ET: (19, 10, 7); 224-ET: (25, 13, 9); 270-ET: (30, 16, 11); 441-ET: (49, 26, 18); 494-ET: (55, 29, 20); 612-ET: (68, 36, 25)
====(2/1, 3/2, 6/5: 100/99, 385/384)[20] (Supermagic)====
7L 12m 1s = (~189/176, 250/243~55/54~121/120~64/63, 81/80~45/44) = (125.8905c, 35.2545c, 23.6254c) TE
~ 189/176 12/11 10/9 121/108 11/9 4/3 110/81 22/15 32/21 5/3 121/72 11/6 2/1
~ 12/11 144/121 6/5 21/16 15/11 81/55 3/2 18/11 216/121 9/5 63/32 2/1 as LmmLmLmmLmsmLmmLmLmm
m = s -> LssLsLssLsssLssLsLss Tetracot[20] MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL Camahueto[20]; L = s -> LssLsLssLsLsLssLsLss Diminished[20] MODMOS;
s = 0 -> LmmLmLmmLmmLmmLmLmm Falttone[19]; m = 0 -> LLLLsLLL Porcupine[8]
19-ET: (1, 1, 0); 22-ET: (3, 0, 1); 26-ET: ( 34-ET; 41-ET; 104-ET:
====[[SNS (2/1, 3/2, 6/5: 4375/4374)-20|(2/1, 3/2, 6/5: 4375/4374)[20] (Ragismic)]]====
7L 12m 1s = (~21/20, 250/243~36/35, ~81/80) = (84.5204c, 48.8911c, 21.6658c) TE
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 189/100 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
L - m = m - s -> Unidec[20] MODMOS
s = 0 -> LmmLmLmmLmmLmmLmLmm Falttone[19]; m = 0 -> LLLLsLLL Hystrix[8]
19-ET: (1, 1, 0); 53-ET: (4, 2, 1); 72-ET: (5, 3, 1); 99-ET: (7, 4, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 441-ET: (31, 18, 8); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
=====[[SNS (2/1, 3/2, 6/5: 3025/3024, 4375/4374)-20|(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[20] (Thor)]]=====
7L 12m 1s = (~21/20, 250/243~36/35, 81/80~245/242) = (84.5509c, 48.8802c, 21.6019c) TE
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 121/64 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
s = 0 -> LmmLmLmmLmmLmmLmLmm; m = 0 -> LLLLsLLL
19-ET: (1, 1, 0); 34d: (3, 1, 1); 46-ET: (3, 2, 1); 72-ET: (5, 3, 1); 80-ET: (6, 3, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
====[[SNS (2/1, 3/2, 6/5: 3025/3024, 4375/4374)-39|(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[39] (Thor)]]====
7L 12m 20s = (~28/27, ~64/63, 81/80~245/242) = (62.949c, 27.2783c, 21.6019c) TE
~ 81/80 36/35 126/121 27/25 35/32 10/9 9/8 8/7 81/70 6/5 147/121 216/175 5/4 35/27 21/16 4/3 27/20 48/35 25/18 36/25 35/24 40/27 3/2 32/21 54/35 8/5 175/108 242/147 5/3 140/81 7/4 16/9 9/5 64/35 121/63 35/18 160/81 2/1 as smsLsmsmsLsmsLsmsmsLsmsmsLsmsLsmsmsLsms
m = s -> sssLsssssLsssLsssssLsssssLsssLsssssLsss Hemiamity[39] MODMOS; L = m -> sLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLs; s = 0 -> sLssLsLssLssLsLssLs
46-ET: (2, 1, 1); 72-ET: (4, 2, 1); 80-ET: (4, 1, 2); 118-ET: (6, 3, 2); 152-ET: (8, 3, 3); 171-ET: (9, 4, 3); 224-ET: (12, 5, 4); 270-ET: (14, 6, 5); 494-ET: (26, 11, 9); 612-ET: (32, 14, 11)
==2.3.5; [[Hemifamity family#Hemifamity|Hemifamity]] ==
===((2/1, 3/2)[5], 10/9)===
====[[SNS ((2/1, 3/2)-5, 10/9)-10|((2/1, 3/2)[5], 10/9)[10]]]====
5L 2M 3s = (10/9, 16/15, 81/80)
81/80 9/8 6/5 4/3 27/20 3/2 8/5 16/9 9/5 2/1 as sLMLsLMLsL
L = M -> sLLLsLLLsL Dicot[10] MODMOS; M = s -> sLsLsLsLsL Blackwood[10]; L = s -> ssLsssLsss Supersharp[10] MODMOS;
L - M = M - s -> dLsLdLsLdL Srutal[10] MODMOS
s = 0 -> LsLLsLL Meantone[7]; M = 0 -> sLLsLLsL Father[8]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-17|((2/1, 3/2)[5], 10/9: 5120/5103)[17] (Hemifamity)]]====
5L 2m 10s = (~35/32, 256/243~21/20, 81/80~64/63) = (153.2376c, 85.8342c, 24.4931c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss;
L - m = m - s -> Garibaldi[17]; s = 0 -> LsLLLsL Dominant[7]; m = 0 -> sLssLssLssLssLs
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-17|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[17] (Akea)]]=====
5L 2m 10s = (35/32~12/11, 256/243~21/20, 81/80~64/63~55/54) = (156.6236c, 85.7981c, 26.2356c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss; s = 0 -> LsLLLsL Arnold[7]; m = 0 -> sLssLssLssLssLs
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-24|((2/1, 3/2)[5], 10/9: 5120/5103)[24] (Hemifamity)]]====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63) = (132.1305c, 61.3411c, 24.4931c) TE


~ 64/63 35/32 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 35/24 40/27 3/2 32/21 105/64 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
{| class="wikitable"
 
|+Rank-1 temperings
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Dominant[7]
!ET
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-24|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[24] (Akea)]]=====
|[[15edo|15]]
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63~55/54) = (127.002c, 59.5625c, 26.2356c) TE
|[[19edo|19]]
 
|27e
~ 64/63 12/11 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 16/11 40/27 3/2 32/21 18/11 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
|[[34edo|34]]
|-
!Step sizes in ET
|(2, 1, 0)
|(2, 1, 1)
|(3, 2, 1)
|(4, 2, 1)
|}
=====(2/1, 3/2, 6/5: 56/55, 91/90, 100/99)[12] (Thrasher)=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents (TE)
|-
|7L 1m 4s
|(27/25~15/14~12/11~13/12, 25/24~21/20~33/32~27/26, 250/243~28/27~55/54~40/39)
|
|}
{| class="wikitable"
!Mode number
!Mode as simplest JI pre-image
!Step pattern
!Meantone[12]
!UDP
![[Mode height]]
|-
|  -6
|~ 28/27 10/9 44/39 11/9 4/3 110/81 22/15 14/9 5/3 22/13 11/6 2/1
|sLsLLsLmLsLL
|sLsLLsLsLsLL
|<nowiki>1|10</nowiki>
|
|-
|  -5
|~ 28/27 10/9 7/6 5/4 33/26 11/8 3/2 14/9 5/3 121/72 11/6 2/1
|sLmLsLLsLsLL
|sLsLsLLsLsLL
|<nowiki>0|11</nowiki>
|
|-
|  -4
|~ 28/27 10/9 6/5 11/9 4/3 110/81 22/15 8/5 44/27 16/9 11/6 2/1
|sLLsLsLLsLmL
|sLLsLsLLsLsL
|<nowiki>4|7</nowiki>
|
|-
|  -3
|~ 28/27 10/9 6/5 11/9 4/3 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|sLLsLmLsLLsL
|sLLsLsLsLLsL
|<nowiki>3|8</nowiki>
|
|-
-2
|~ 21/20 9/8 7/6 5/4 15/11 11/8 3/2 14/9 5/3 9/5 11/6 2/1
|mLsLLsLsLLsL
|sLsLLsLsLLsL
|<nowiki>2|9</nowiki>
|
|-
|  -1
|~ 12/11 10/9 6/5 11/9 4/3 16/11 22/15 8/5 5/3 9/5 11/6 2/1
|LsLsLLsLmLsL
|LsLsLLsLsLsL
|<nowiki>6|5</nowiki>
|
|-
|1
|~ 12/11 10/9 6/5 5/4 15/11 11/8 3/2 81/50 5/3 9/5 11/6 2/1
|LsLmLsLLsLsL
|LsLsLsLLsLsL
|<nowiki>5|6</nowiki>
|
|-
|2
|~ 12/11 10/9 6/5 9/7 4/3 16/11 22/15 8/5 12/7 16/9 48/25 2/1
|LsLLsLsLLsLm
|LsLLsLsLLsLs
|<nowiki>9|2</nowiki>
|
|-
|3
|~ 12/11 10/9 6/5 9/7 4/3 16/11 3/2 18/11 5/3 9/5 27/14 2/1
|LsLLsLmLsLLs
|LsLLsLsLsLLs
|<nowiki>8|3</nowiki>
|
|-
|4
|~ 12/11 9/8 27/22 5/4 15/11 81/55 3/2 18/11 5/3 9/5 27/14 2/1
|LmLsLLsLsLLs
|LsLsLLsLsLLs
|<nowiki>7|4</nowiki>
|
|-
|5
|~ 12/11 13/11 6/5 9/7 4/3 16/11 192/121 8/5 12/7 9/5 27/14 2/1
|LLsLsLLsLmLs
|LLsLsLLsLsLs
|<nowiki>11|0</nowiki>
|
|-
|6
|~ 12/11 13/11 6/5 9/7 15/11 81/55 3/2 81/50 39/22 9/5 27/14 2/1
|LLsLmLsLLsLs
|LLsLsLsLLsLs
|<nowiki>10|1</nowiki>
|
|}
{| class="wikitable"
|+Rank-2 temperings (mode -3)
!Equivalence
!Step pattern
!Scale
!Comma list
|-
|m = s
|[[7L 5s|sLLsLsLsLLsL]]
|[[Meantone family#Vincenzo|Vincenzo]][12]
|45/44, 56/55, 65/64, 81/80
|-
|s = 0
|[[7L 1s|LLLsLLLL]]
|[[Trienstonic clan#Opossum|Opossum]][8]
|28/27, 40/39, 55/54, 66/65
|}


m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Arnold[7]
{| class="wikitable"
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-31|((2/1, 3/2)[5], 10/9: 5120/5103)[31] (Hemifamity)]]====
|+Rank-1 temperings
5L 2m 24s = (~1225/1152, ~49/48, 81/80~64/63) = (107.6374c, 36.848c, 24.4931c) TE
!ET
 
|[[15edo|15]]
~ 64/63 36/35 35/32 10/9 9/8 8/7 7/6 32/27 6/5 128/105 35/27 21/16 4/3 27/20 48/35 35/24 40/27 3/2 32/21 54/35 105/64 5/3 27/16 12/7 7/4 16/9 9/5 64/35 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
|[[19edo|19]]
 
|27e
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss; L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
|[[34edo|34]]
 
|-
s = 0 -> LsLLLsL Dominant[7]; m = 0 -> ssLssssssLssssLssssLssssssLss Immunity[29] MODMOS
!Step sizes in ET
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-31|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[31] (Akea)]]=====
|(2, 1, 0)
5L 2m 24s = (~35/33, 49/48~56/55, 81/80~64/63~55/54) = (100.7664c, 33.3269c, 26.2356c) TE
|(2, 1, 1)
|(3, 2, 1)
|(4, 2, 1)
|}
=====[[SNS (2/1, 3/2, 6/5: 4375/4374)-12|(2/1, 3/2, 6/5: 4375/4374)[12] (Ragismic)]]=====
7L 1m 4s = (~27/25, ~25/24, 250/243~36/35) = (133.4115c, 70.5569c, 48.8911c) TE
 
~ 27/25 10/9 6/5 35/27 4/3 36/25 3/2 81/50 5/3 9/5 35/18 2/1 as LsLLsLmLsLLs
 
m = s -> LsLLsLsLsLLs Falttone[12]; L = m -> LsLLsLLLsLLs MODMOS; L = s -> LLLLLLsLLLLL; s = 0 -> LLLLsLLL Hystrix[8]
 
19-ET: (2, 1, 1); 53-ET: (6, 3, 2); 72-ET: (8, 4, 3); 99-ET: (11, 6, 4); 118-ET: (13, 7, 5); 152-ET: (17, 9, 6); 171-ET: (19, 10, 7); 224-ET: (25, 13, 9); 270-ET: (30, 16, 11); 441-ET: (49, 26, 18); 494-ET: (55, 29, 20); 612-ET: (68, 36, 25)
====(2/1, 3/2, 6/5: 100/99, 144/143)[20] (No-7 Ptolemismic)====
7L 12m 1s = (~189/176, 250/243~55/54~121/120~40/39, 81/80~45/44~65/64) =
 
====(2/1, 3/2, 6/5: 100/99, 385/384)[20] (Supermagic)====
7L 12m 1s = (~189/176, 250/243~55/54~121/120~64/63, 81/80~45/44) = (125.8905c, 35.2545c, 23.6254c) TE
 
40/39 12/11 10/9 32/27 6/5 11/9 13/10 4/3 11/8 22/15 3/2 20/13 13/8 5/3 16/9 9/5 11/6 39/20 2/1
====[[SNS (2/1, 3/2, 6/5: 4375/4374)-20|(2/1, 3/2, 6/5: 4375/4374)[20] (Ragismic)]]====
7L 12m 1s = (~21/20, 250/243~36/35, ~81/80) = (84.5204c, 48.8911c, 21.6658c) TE
 
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 189/100 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
 
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
 
L - m = m - s -> Unidec[20] MODMOS
 
s = 0 -> LmmLmLmmLmmLmmLmLmm Falttone[19]; m = 0 -> LLLLsLLL Hystrix[8]
 
19-ET: (1, 1, 0); 53-ET: (4, 2, 1); 72-ET: (5, 3, 1); 99-ET: (7, 4, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 441-ET: (31, 18, 8); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
=====[[SNS (2/1, 3/2, 6/5: 3025/3024, 4375/4374)-20|(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[20] (Thor)]]=====
7L 12m 1s = (~21/20, 250/243~36/35, 81/80~245/242) = (84.5509c, 48.8802c, 21.6019c) TE
 
~ 21/20 27/25 10/9 7/6 6/5 63/50 35/27 4/3 7/5 36/25 35/24 3/2 63/40 81/50 5/3 7/4 9/5 121/64 35/18 2/1 as LmmLmLmmLmsmLmmLmLmm
 
m = s -> LssLsLssLsssLssLsLss MODMOS; L = m -> LLLLLLLLLLsLLLLLLLLL; L = s -> LssLsLssLsLsLssLsLss MODMOS;
 
s = 0 -> LmmLmLmmLmmLmmLmLmm; m = 0 -> LLLLsLLL
 
19-ET: (1, 1, 0); 34d: (3, 1, 1); 46-ET: (3, 2, 1); 72-ET: (5, 3, 1); 80-ET: (6, 3, 2); 118-ET: (8, 5, 2); 152-ET: (11, 6, 3); 171-ET: (12, 7, 3); 224-ET: (16, 9, 4); 270-ET: (19, 11, 5); 494-ET: (35, 20, 9); 612-ET: (43, 25, 11)
====[[SNS (2/1, 3/2, 6/5: 3025/3024, 4375/4374)-39|(2/1, 3/2, 6/5: 3025/3024, 4375/4374)[39] (Thor)]]====
7L 12m 20s = (~28/27, ~64/63, 81/80~245/242) = (62.949c, 27.2783c, 21.6019c) TE
 
~ 81/80 36/35 126/121 27/25 35/32 10/9 9/8 8/7 81/70 6/5 147/121 216/175 5/4 35/27 21/16 4/3 27/20 48/35 25/18 36/25 35/24 40/27 3/2 32/21 54/35 8/5 175/108 242/147 5/3 140/81 7/4 16/9 9/5 64/35 121/63 35/18 160/81 2/1 as smsLsmsmsLsmsLsmsmsLsmsmsLsmsLsmsmsLsms
 
m = s -> sssLsssssLsssLsssssLsssssLsssLsssssLsss Hemiamity[39] MODMOS; L = m -> sLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLsLs; s = 0 -> sLssLsLssLssLsLssLs
 
46-ET: (2, 1, 1); 72-ET: (4, 2, 1); 80-ET: (4, 1, 2); 118-ET: (6, 3, 2); 152-ET: (8, 3, 3); 171-ET: (9, 4, 3); 224-ET: (12, 5, 4); 270-ET: (14, 6, 5); 494-ET: (26, 11, 9); 612-ET: (32, 14, 11)
 
==2.3.5; [[Hemifamity family#Hemifamity|Hemifamity]] ==
===((2/1, 3/2)[5], 10/9)===
====[[SNS ((2/1, 3/2)-5, 10/9)-10|((2/1, 3/2)[5], 10/9)[10]]]====
5L 2M 3s = (10/9, 16/15, 81/80)
 
81/80 9/8 6/5 4/3 27/20 3/2 8/5 16/9 9/5 2/1 as sLMLsLMLsL
 
L = M -> sLLLsLLLsL Dicot[10] MODMOS; M = s -> sLsLsLsLsL Blackwood[10]; L = s -> ssLsssLsss Supersharp[10] MODMOS;
 
L - M = M - s -> dLsLdLsLdL Srutal[10] MODMOS
 
s = 0 -> LsLLsLL Meantone[7]; M = 0 -> sLLsLLsL Father[8]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-17|((2/1, 3/2)[5], 10/9: 5120/5103)[17] (Hemifamity)]]====
5L 2m 10s = (~35/32, 256/243~21/20, 81/80~64/63) = (153.2376c, 85.8342c, 24.4931c) TE
 
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
 
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss;
 
L - m = m - s -> Garibaldi[17]; s = 0 -> LsLLLsL Dominant[7]; m = 0 -> sLssLssLssLssLs
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-17|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[17] (Akea)]]=====
5L 2m 10s = (35/32~12/11, 256/243~21/20, 81/80~64/63~55/54) = (156.6236c, 85.7981c, 26.2356c) TE
 
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
 
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss; s = 0 -> LsLLLsL Arnold[7]; m = 0 -> sLssLssLssLssLs
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-24|((2/1, 3/2)[5], 10/9: 5120/5103)[24] (Hemifamity)]]====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63) = (132.1305c, 61.3411c, 24.4931c) TE
 
~ 64/63 35/32 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 35/24 40/27 3/2 32/21 105/64 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
 
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Dominant[7]
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-24|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[24] (Akea)]]=====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63~55/54) = (127.002c, 59.5625c, 26.2356c) TE
 
~ 64/63 12/11 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 16/11 40/27 3/2 32/21 18/11 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
 
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Arnold[7]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-31|((2/1, 3/2)[5], 10/9: 5120/5103)[31] (Hemifamity)]]====
5L 2m 24s = (~1225/1152, ~49/48, 81/80~64/63) = (107.6374c, 36.848c, 24.4931c) TE
 
~ 64/63 36/35 35/32 10/9 9/8 8/7 7/6 32/27 6/5 128/105 35/27 21/16 4/3 27/20 48/35 35/24 40/27 3/2 32/21 54/35 105/64 5/3 27/16 12/7 7/4 16/9 9/5 64/35 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
 
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss; L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
 
s = 0 -> LsLLLsL Dominant[7]; m = 0 -> ssLssssssLssssLssssLssssssLss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-31|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[31] (Akea)]]=====
5L 2m 24s = (~35/33, 49/48~56/55, 81/80~64/63~55/54) = (100.7664c, 33.3269c, 26.2356c) TE
 
~ 64/63 36/35 12/11 10/9 9/8 8/7 7/6 32/27 6/5 11/9 35/27 21/16 4/3 27/20 11/8 16/11 40/27 3/2 32/21 54/35 18/11 5/3 27/16 12/7 7/4 16/9 9/5 11/6 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
 
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss, L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
 
s = 0 -> LsLLLsL Arnold[7]; m = 0 -> ssLssssssLssssLssssLssssssLss
===((2/1, 3/2)[12], 81/80) or ((2/1, 3/2)[12], 64/63) ===
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5103)-24|((2/1, 3/2)[12], 64/63: 5120/5013)[24] (Hemifamity)]]====
5L 7M 12s = (~135/128, ~28/27, 81/80~64/63) = (95.2825c, 61.3411c, 24.4931c) TE
 
~ 64/63 15/14 243/224 9/8 8/7 32/27 6/5 81/64 9/7 4/3 27/20 10/7 81/56 3/2 32/21 45/28 80/49 27/16 12/7 16/9 9/5 243/128 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
 
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-24|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[24] (Pele)]]=====
5L 7M 12s = (135/128~35/33, 28/27~33/32, 81/80~64/63~99/98) = (97.5911c, 58.2557c, 25.3165c) TE
 
~ 64/63 15/14 12/11 9/8 8/7 32/27 6/5 14/11 9/7 4/3 27/20 10/7 16/11 3/2 32/21 45/28 18/11 27/16 12/7 16/9 9/5 12/11 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
 
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5013)-36|((2/1, 3/2)[12], 64/63: 5120/5013)[36] (Hemifamity)]]====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63) = (70.7894c, 36.848c, 24.4931c) TE
 
~ 64/63 36/35 15/14 243/224 54/49 9/8 8/7 81/70 32/27 6/5 128/105 81/64 9/7 64/49 4/3 27/20 48/35 10/7 81/56 72/49 3/2 32/21 54/35 45/28 80/49 81/49 27/16 12/7 243/140 16/9 9/5 64/35 243/128 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
 
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
 
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-36|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[36] (Pele)]]=====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63~99/98) = (72.2746c, 32.9392c, 25.3165c) TE
 
~ 64/63 36/35 15/14 12/11 54/49 9/8 8/7 64/55 32/27 6/5 128/105 14/11 9/7 64/49 4/3 27/20 48/35 10/7 16/11 72/49 3/2 32/21 54/35 45/28 18/11 81/49 27/16 12/7 96/55 16/9 9/5 64/35 22/21 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
 
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
 
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
 
==2.3.25==
===(2/1, 3/2, 100/81)===
====(2/1, 3/2, 100/81)[7]====
=====(2/1, 3/2, 100/81: 4375/4374)[7] (Ragismic)=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents
|-
|2L 1m 4s
|(2500/2187~8/7, ~9/8, ~27/25)
|(231.1884c, 203.974c, 133.4123c)
|}
{| class="wikitable"
!Mode number
!Mode in JI
!Step pattern
![[Mode height]]
|-
|  -3
|~ 9/8 175/144 25/18 3/2 81/50 50/27 2/1
|msLssLs
|  0.0158
|-
|  -2
|~ 27/25 175/144 21/16 3/2 81/50 7/4 2/1
|smsLssL
|  -0.0211
|-
|  -1
|~ 8/7 100/81 25/18 3/2 12/7 50/27 2/1
|LsmsLss
|  0.037
|-
|  0
|~ 27/25 100/81 4/3 3/2 81/50 50/27 2/1
|sLsmsLs
|  0
|-
|  1
|~ 27/25 7/6 4/3 36/25 81/50 7/4 2/1
|ssLsmsL
|  -0.037
|-
|  2
|~ 8/7 100/81 4/3 32/21 288/175 50/27 2/1
|LssLsms
|  0.0211
|-
|  3
|~ 27/25 100/81 4/3 36/25 288/175 16/9 2/1
|sLssLsm
|  -0.0158
|}
 
=====[[SNS_(2/1,_3/2,_100/81:_1225/1224,_1701/1700)-7|(2/1, 3/2, 100/81: 1225/1224, 1701/1700)[7]]]=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents
|-
|2L 1m 4s
|(2500/2187~8/7, ~9/8, ~27/25)
|(231.5807c, 203.8094c, 133.2573c)
|}
{| class="wikitable"
!Mode number
!Mode in JI
!Step pattern
![[Mode height]]
|-
|  -3
|~ 9/8 17/14 25/18 3/2 34/21 50/27 2/1
|msLssLs
|  0.0157
|-
|  -2
|~ 27/25 17/14 21/16 3/2 34/21 7/4 2/1
|smsLssL
|  -0.0214
|-
|  -1
|~ 8/7 21/17 25/18 3/2 12/7 50/27 2/1
|LsmsLss
|  0.0371
|-
|  0
|~ 27/25 21/17 4/3 3/2 34/21 50/27 2/1
|sLsmsLs
|  0
|-
|  1
|~ 27/25 7/6 4/3 36/25 34/21 7/4 2/1
|ssLsmsL
|  -0.0371
|-
|  2
|~ 8/7 21/17 4/3 32/21 28/17 50/27 2/1
|LssLsms
|  0.0214
|-
|  3
|~ 27/25 21/17 4/3 36/25 28/17 16/9 2/1
|sLssLsm
|  -0.0157
|}


~ 64/63 36/35 12/11 10/9 9/8 8/7 7/6 32/27 6/5 11/9 35/27 21/16 4/3 27/20 11/8 16/11 40/27 3/2 32/21 54/35 18/11 5/3 27/16 12/7 7/4 16/9 9/5 11/6 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss, L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
s = 0 -> LsLLLsL Arnold[7]; m = 0 -> ssLssssssLssssLssssLssssssLss
===((2/1, 3/2)[12], 81/80) or ((2/1, 3/2)[12], 64/63) ===
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5103)-24|((2/1, 3/2)[12], 64/63: 5120/5013)[24] (Hemifamity)]]====
5L 7M 12s = (~135/128, ~28/27, 81/80~64/63) = (95.2825c, 61.3411c, 24.4931c) TE
~ 64/63 15/14 243/224 9/8 8/7 32/27 6/5 81/64 9/7 4/3 27/20 10/7 81/56 3/2 32/21 45/28 80/49 27/16 12/7 16/9 9/5 243/128 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-24|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[24] (Pele)]]=====
5L 7M 12s = (135/128~35/33, 28/27~33/32, 81/80~64/63~99/98) = (97.5911c, 58.2557c, 25.3165c) TE
~ 64/63 15/14 12/11 9/8 8/7 32/27 6/5 14/11 9/7 4/3 27/20 10/7 16/11 3/2 32/21 45/28 18/11 27/16 12/7 16/9 9/5 12/11 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5013)-36|((2/1, 3/2)[12], 64/63: 5120/5013)[36] (Hemifamity)]]====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63) = (70.7894c, 36.848c, 24.4931c) TE
~ 64/63 36/35 15/14 243/224 54/49 9/8 8/7 81/70 32/27 6/5 128/105 81/64 9/7 64/49 4/3 27/20 48/35 10/7 81/56 72/49 3/2 32/21 54/35 45/28 80/49 81/49 27/16 12/7 243/140 16/9 9/5 64/35 243/128 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-36|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[36] (Pele)]]=====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63~99/98) = (72.2746c, 32.9392c, 25.3165c) TE
~ 64/63 36/35 15/14 12/11 54/49 9/8 8/7 64/55 32/27 6/5 128/105 14/11 9/7 64/49 4/3 27/20 48/35 10/7 16/11 72/49 3/2 32/21 54/35 45/28 18/11 81/49 27/16 12/7 96/55 16/9 9/5 64/35 22/21 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
==2.5.9; Marvel ==
==2.5.9; Marvel ==
=== ((2/1, 5/4)[3], 9/8)===
=== ((2/1, 5/4)[3], 9/8)===
Line 4,747: Line 5,139:


53-ET: (7, 3, 0); 58-ET: (8, 2, 1); 77-ET: (11, 3, 1); 111-ET: (15, 5, 1); 130-ET: (18, 6, 1)
53-ET: (7, 3, 0); 58-ET: (8, 2, 1); 77-ET: (11, 3, 1); 111-ET: (15, 5, 1); 130-ET: (18, 6, 1)
[[Category:Gallery]]
[[Category:Step-nested scales]]
[[Category:Step-nested scales]]
[[Category:Rank-3 scales]]
[[Category:Rank-3 scales]]
[[Category:Lists of scales]]
[[Category:Lists of scales]]
[[Category:Rank 3]]
[[Category:Rank 3]]
{{Todo| cleanup }}