Starling temperaments: Difference between revisions
No edit summary |
m Update linking |
||
(33 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
This page discusses miscellaneous rank-2 | {{Technical data page}} | ||
This page discusses miscellaneous [[rank-2 temperament]]s tempering out [[126/125]], the starling comma or septimal semicomma. | |||
Temperaments discussed in families and clans are: | Temperaments discussed in families and clans are: | ||
* ''[[Pater]]'' | * ''[[Pater]]'' (+16/15) → [[Father family #Pater|Father family]] | ||
* ''[[ | * ''[[Flattie]]'' (+21/20) → [[Dicot family #Flattie|Dicot family]] | ||
* ''[[Opossum]]'' | * ''[[Opossum]]'' (+28/27) → [[Trienstonic clan #Opossum|Trienstonic clan]] | ||
* | * [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]] | ||
* [[Keemun]] | * [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]] | ||
* | * [[Augene]] (+64/63) → [[Augmented family #Augene|Augmented family]] | ||
* [[Meantone]] | * [[Meantone]] (+81/80) → [[Meantone family #Septimal meantone|Meantone family]] | ||
* [[Mavila]] | * [[Mavila]] (+135/128) → [[Pelogic family #Mavila|Pelogic family]] | ||
* [[Sensi]] | * [[Sensi]] (+245/243), [[Sensipent family #Sensi|Sensipent family]] | ||
* | * [[Muggles]] (+525/512) → [[Magic family #Muggles|Magic family]] | ||
* [[ | * [[Valentine]] (+1029/1024) → [[Gamelismic clan #Valentine|Gamelismic clan]] | ||
* ''[[Diaschismic]]'' | * ''[[Diaschismic]]'' (+2048/2025) → [[Diaschismic family #Septimal diaschismic|Diaschismic family]] | ||
* ''[[Wollemia]]'' | * ''[[Wollemia]]'' (+2240/2187) → [[Tetracot family #Wollemia|Tetracot family]] | ||
* ''[[Unicorn]]'' | * ''[[Unicorn]]'' (+10976/10935) → [[Unicorn family #Unicorn|Unicorn family]] | ||
* ''[[Coblack]]'' | * ''[[Coblack]]'' (+16807/16384) → [[Trisedodge family #Coblack|Trisedodge family]] / [[Cloudy clan #Coblack|cloudy clan]] | ||
* ''[[Grackle]]'' | * ''[[Grackle]]'' (+32805/32768) → [[Schismatic family #Grackle|Schismatic family]] | ||
* ''[[Worschmidt]]'' | * ''[[Worschmidt]]'' (+33075/32768) → [[Würschmidt family #Worschmidt|Würschmidt family]] | ||
* ''[[Passionate]]'' | * ''[[Thuja]]'' (+65536/64827) → [[Buzzardsmic clan #Thuja|Buzzardsmic clan]] | ||
* ''[[Vishnean]]'' | * ''[[Passionate]]'' (+131072/127575) → [[Passion family #Passionate|Passion family]] | ||
* ''[[Ditonic]]'' | * ''[[Vishnean]]'' (+540225/524288) → [[Vishnuzmic family #Vishnean|Vishnuzmic family]] | ||
* ''[[Muscogee]]'' | * ''[[Ditonic]]'' (+8751645/8388608) → [[Ditonmic family #Ditonic|Ditonmic family]] | ||
* ''[[Muscogee]]'' (+33756345/33554432) → [[Mabila family #Muscogee|Mabila family]] | |||
Since (6/5)<sup>3</sup> = 126/125 × 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/ | Since {{nowrap|(6/5)<sup>3</sup> {{=}} 126/125 × 12/7}}, these temperaments tend to have a relatively small complexity for 6/5. They also possess the [[starling tetrad]], the 6/5–6/5–6/5–7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before [[12edo]] established itself as the standard tuning, it is actually three stacked minor thirds and an augmented second, contrary to the popular belief that it is four stacked minor thirds. | ||
== Myna == | == Myna == | ||
Line 30: | Line 32: | ||
{{Main| Myna }} | {{Main| Myna }} | ||
7-limit myna is naturally found by establishing a structure of thirds, by making [[7/6]] - [[6/5]] - [[49/40]] - [[5/4]] - [[9/7]] all equidistant (the distances between which are [[36/35]], [[49/48]], and [[50/49]]). 11-limit myna then arises from equating this neutral third to [[11/9]]. Myna's characteristic feature is that the pental thirds are tuned outwards so that the chroma between them ([[25/24]]) is twice the size of the interval between the pental and septimal thirds ([[36/35]]), leaving space for a neutral third in between. In that sense, it is opposed to [[keemic temperaments]], where the chroma between the pental thirds is the same as the distance between the pental and septimal thirds. | |||
Subgroup: 2.3.5.7 | In terms of commas tempered, in addition to 126/125, myna adds [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the {{nowrap|27 & 31}} temperament. It has 6/5 as a generator, and [[58edo]] can be used as a tuning, with [[89edo]] being a better one, and fans of round amounts in cents may like [[120edo]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits. | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 126/125, 1728/1715 | [[Comma list]]: 126/125, 1728/1715 | ||
{{Mapping|legend=1| 1 9 9 8 | 0 -10 -9 -7 }} | |||
: mapping generators: ~2, ~5/3 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 310.146 | |||
[[POTE | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}} | * 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}} | ||
: | : {{monzo list| 1 0 0 0 | 0 1 0 0 | 9/10 9/10 0 0 | 17/10 7/10 0 0 }} | ||
: [[Eigenmonzo]] | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | ||
{{ | {{Optimal ET sequence|legend=1| 27, 31, 58, 89 }} | ||
[[Badness]]: 0.027044 | [[Badness]]: 0.027044 | ||
Line 58: | Line 60: | ||
Comma list: 126/125, 176/175, 243/242 | Comma list: 126/125, 176/175, 243/242 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 22 | 0 -10 -9 -7 -25 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 31, 58, 89 }} | ||
Badness: 0.016842 | Badness: 0.016842 | ||
Line 71: | Line 73: | ||
Comma list: 126/125, 144/143, 176/175, 196/195 | Comma list: 126/125, 144/143, 176/175, 196/195 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 22 0 | 0 -10 -9 -7 -25 5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.276 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 31, 58 }} | ||
Badness: 0.017125 | Badness: 0.017125 | ||
Line 84: | Line 86: | ||
Comma list: 78/77, 91/90, 126/125, 176/175 | Comma list: 78/77, 91/90, 126/125, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 22 20 | 0 -10 -9 -7 -25 -22 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.381 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 31f, 58f }} | ||
Badness: 0.027568 | Badness: 0.027568 | ||
Line 97: | Line 99: | ||
Comma list: 66/65, 105/104, 126/125, 540/539 | Comma list: 66/65, 105/104, 126/125, 540/539 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 22 23 | 0 -10 -9 -7 -25 -26 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.804 | ||
Optimal | {{Optimal ET sequence|legend=1| 27eff, 31 }} | ||
Badness: 0.029868 | Badness: 0.029868 | ||
Line 110: | Line 112: | ||
Comma list: 99/98, 126/125, 385/384 | Comma list: 99/98, 126/125, 385/384 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 -1 | 0 -10 -9 -7 6 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 309.737 | ||
Optimal | {{Optimal ET sequence|legend=1| 27, 31 }} | ||
Badness: 0.033434 | Badness: 0.033434 | ||
Line 123: | Line 125: | ||
Comma list: 56/55, 100/99, 1728/1715 | Comma list: 56/55, 100/99, 1728/1715 | ||
Mapping: | Mapping: {{mapping| 1 9 9 8 2 | 0 -10 -9 -7 2 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.853 | ||
Optimal | {{Optimal ET sequence|legend=1| 4, 23bc, 27e }} | ||
Badness: 0.048687 | Badness: 0.048687 | ||
== | == Nusecond == | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Nusecond]].'' | |||
Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as {{nowrap|31 & 70}}. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. [[31edo]] can be used as a tuning, or [[132edo]] with a val which is the sum of the [[patent val]]s for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. Mosses of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note mos might also be considered from the melodic point of view. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 126/125, 2430/2401 | |||
{{Mapping|legend=1| 1 3 4 5 | 0 -11 -13 -17 }} | |||
: mapping generators: ~2, ~49/45 | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/45 = 154.579 | ||
{{ | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }} | |||
: {{monzo list| 1 0 0 0 | -5/13 0 11/13 0 | 0 0 1 0 | -3/13 0 17/13 0 }} | |||
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | |||
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }} | |||
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 5/11 13/11 0 0 | 4/11 17/11 0 0 }} | |||
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | |||
{{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }} | |||
[[Badness]]: 0.050389 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 121/120, 126/125 | Comma list: 99/98, 121/120, 126/125 | ||
Mapping: | Mapping: {{mapping| 1 3 4 5 5 | 0 -11 -13 -17 -12 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.645 | |||
Minimax tuning: | |||
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }} | |||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}] | |||
: unchanged-interval (eigenmonzo) basis: 2.11/9 | |||
Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly. | |||
{{Optimal ET sequence|legend=1| 8d, 23de, 31, 101, 132ce, 163ce, 194cee }} | |||
Badness: 0.025621 | |||
=== 13-limit === | |||
=== | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 66/65, 99/98, 121/120, 126/125 | ||
Mapping: | Mapping: {{mapping| 1 3 4 5 5 5 | 0 -11 -13 -17 -12 -10 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 154.478 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 23de, 31, 70f, 101ff }} | ||
Badness: 0. | Badness: 0.023323 | ||
==== | == Oolong == | ||
{{Main| Oolong }} | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Oolong]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 126/125, 117649/116640 | |||
{{Mapping|legend=1| 1 6 7 8 | 0 -17 -18 -20 }} | |||
Optimal | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 311.679 | ||
{{Optimal ET sequence|legend=1| 27, 50, 77 }} | |||
[[Badness]]: 0.073509 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 126/125, | Comma list: 126/125, 176/175, 26411/26244 | ||
Mapping: | Mapping: {{mapping| 1 6 7 8 18 | 0 -17 -18 -20 -56 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.587 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }} | ||
Badness: 0. | Badness: 0.056915 | ||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 126/125, 196/195, | Comma list: 126/125, 176/175, 196/195, 13013/12960 | ||
Mapping: | Mapping: {{mapping| 1 6 7 8 18 5 | 0 -17 -18 -20 -56 -5 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 311.591 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 77, 104c, 181c }} | ||
Badness: 0.035582 | |||
== Vines == | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Vines]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 126/125, 84035/82944 | |||
{{Mapping|legend=1| 2 7 8 8 | 0 -8 -7 -5 }} | |||
[[Optimal tuning]] ([[POTE]]): 1\2, ~6/5 = 312.602 | |||
= | {{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }} | ||
[[Badness]]: 0.078049 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 126/125, 385/384, 2401/2376 | ||
Mapping: | Mapping: {{mapping| 2 7 8 8 5 | 0 -8 -7 -5 4 }} | ||
Optimal tuning (POTE): 1\2, ~6/5 = 312.601 | |||
{{Optimal ET sequence|legend=1| 42, 46, 96d, 142d, 238dd }} | |||
Badness: 0.044499 | |||
Badness: 0. | |||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 126/125, 196/195, 364/363, 385/384 | ||
Mapping: | Mapping: {{mapping| 2 7 8 8 5 5 | 0 -8 -7 -5 4 5 }} | ||
POTE | Optimal tuning (POTE): 1\2, ~6/5 = 312.564 | ||
Optimal | {{Optimal ET sequence|legend=1| 42, 46, 96d, 238ddf }} | ||
Badness: 0. | Badness: 0.029693 | ||
== | == Kumonga == | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments # | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Kumonga]].'' | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, | [[Comma list]]: 126/125, 12288/12005 | ||
{{Mapping|legend=1| 1 4 4 3 | 0 -13 -9 -1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 222.797 | |||
{{Optimal ET sequence|legend=1| 16, 27, 43, 70, 167ccdd }} | |||
[[Badness]]: 0.087500 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 126/125, 176/175, | Comma list: 126/125, 176/175, 864/847 | ||
Mapping: | Mapping: {{mapping| 1 4 4 3 7 | 0 -13 -9 -1 -19 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.898 | ||
Optimal | {{Optimal ET sequence|legend=1| 16, 27e, 43, 70e }} | ||
Badness: 0. | Badness: 0.043336 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 126/125, 144/143, 176/175 | Comma list: 78/77, 126/125, 144/143, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 4 4 3 7 5 | 0 -13 -9 -1 -19 -7 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 222.961 | ||
Optimal | {{Optimal ET sequence|legend=1| 16, 27e, 43, 70e, 113cdee }} | ||
Badness: 0. | Badness: 0.028920 | ||
== Cypress == | == Cypress == | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].'' | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Cypress]].'' | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, 19683/19208 | [[Comma list]]: 126/125, 19683/19208 | ||
{{Mapping|legend=1| 1 7 10 15 | 0 -12 -17 -27 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~135/98 = 541.828 | ||
{{ | {{Optimal ET sequence|legend=1| 11cd, 20cd, 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bbcd }} | ||
[[Badness]]: 0.099801 | [[Badness]]: 0.099801 | ||
Line 581: | Line 337: | ||
Comma list: 99/98, 126/125, 243/242 | Comma list: 99/98, 126/125, 243/242 | ||
Mapping: | Mapping: {{mapping| 1 7 10 15 17 | 0 -12 -17 -27 -30 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.772 | ||
Optimal | {{Optimal ET sequence|legend=1| 11cdee, 20cde, 31, 144cd, 175cd, 206bcde, 237bcde }} | ||
Badness: 0.042719 | Badness: 0.042719 | ||
Line 592: | Line 348: | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 66/65, 99/98 | Comma list: 66/65, 99/98, 126/125, 243/242 | ||
Mapping: | Mapping: {{mapping| 1 7 10 15 17 15 | 0 -12 -17 -27 -30 -25 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~15/11 = 541.778 | ||
Optimal | {{Optimal ET sequence|legend=1| 11cdeef, 20cdef, 31 }} | ||
Badness: 0.037849 | Badness: 0.037849 | ||
== Bisemidim == | == Bisemidim == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, 118098/117649 | [[Comma list]]: 126/125, 118098/117649 | ||
{{Mapping|legend=1| 2 1 2 2 | 0 9 11 15 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~35/27 = 455.445 | ||
{{ | {{Optimal ET sequence|legend=1| 50, 58, 108, 166c, 408ccc }} | ||
[[Badness]]: 0.097786 | [[Badness]]: 0.097786 | ||
Line 622: | Line 376: | ||
Comma list: 126/125, 540/539, 1344/1331 | Comma list: 126/125, 540/539, 1344/1331 | ||
Mapping: | Mapping: {{mapping| 2 1 2 2 5 | 0 9 11 15 8 }} | ||
POTE | Optimal tuning (POTE): ~99/70 = 1\2, ~35/27 = 455.373 | ||
Optimal | {{Optimal ET sequence|legend=1| 50, 58, 108, 166ce, 224cee }} | ||
Badness: 0.041190 | Badness: 0.041190 | ||
Line 635: | Line 389: | ||
Comma list: 126/125, 144/143, 196/195, 364/363 | Comma list: 126/125, 144/143, 196/195, 364/363 | ||
Mapping: | Mapping: {{mapping| 2 1 2 2 5 5 | 0 9 11 15 8 10 }} | ||
POTE | Optimal tuning (POTE): ~55/39 = 1\2, ~13/10 = 455.347 | ||
Optimal | {{Optimal ET sequence|legend=1| 50, 58, 166cef, 224ceeff }} | ||
Badness: 0.023877 | Badness: 0.023877 | ||
== | == Casablanca == | ||
: ''For the 5-limit version of this temperament, see [[High badness temperaments # | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Casablanca]].'' | ||
Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described as {{nowrap|31 & 73}}. 74\135 or 91\166 supply good tunings for the generator, and 20- and 31-note mosses are available. | |||
It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the ~35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a [[hexany]] and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone. | |||
Marrakesh, named by [[Herman Miller]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_19166.html#19186 Yahoo! Tuning Group | ''A rose by any other name . . .'']</ref>, is a more accurate 11-limit extension where the generator is identified with 22/15 as opposed to 16/11 in casablanca. | |||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, | [[Comma list]]: 126/125, 589824/588245 | ||
{{Mapping|legend=1| 1 12 10 5 | 0 -19 -14 -4 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/24 = 657.818 | ||
{{ | {{Optimal ET sequence|legend=1| 11b, 20b, 31, 104c, 135c, 166c }} | ||
[[Badness]]: 0. | [[Badness]]: 0.101191 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 126/125, 385/384, 2401 | Comma list: 126/125, 385/384, 2420/2401 | ||
Mapping: | Mapping: {{mapping| 1 12 10 5 4 | 0 -19 -14 -4 -1 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923 | ||
Optimal | {{Optimal ET sequence|legend=1| 11b, 20b, 31 }} | ||
Badness: 0. | Badness: 0.067291 | ||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 126/125, 196/195, | Comma list: 126/125, 196/195, 385/384, 2420/2401 | ||
Mapping: | Mapping: {{mapping| 1 12 10 5 4 7 | 0 -19 -14 -4 -1 -6 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.854 | ||
Optimal | {{Optimal ET sequence|legend=1| 11b, 20b, 31 }} | ||
=== Marrakesh === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 126/125, 176/175, 14641/14580 | |||
: | |||
Mapping: {{mapping| 1 12 10 5 21 | 0 -19 -14 -4 -32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791 | |||
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c }} | |||
Badness: 0.040539 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 126/125, 176/175, 196/195, 14641/14580 | |||
Mapping: {{mapping| 1 12 10 5 21 -10 | 0 -19 -14 -4 -32 25 }} | |||
== | Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.756 | ||
{{Optimal ET sequence|legend=1| 31, 73, 104c, 135c, 239ccf }} | |||
Badness: 0.040774 | |||
==== Murakuc ==== | |||
=== | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 126/125, 144/143, 176/175, 1540/1521 | ||
Mapping: | Mapping: {{mapping| 1 12 10 5 21 7 | 0 -19 -14 -4 -32 -6 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.700 | ||
Optimal | {{Optimal ET sequence|legend=1| 31, 104cff, 135cff }} | ||
Badness: 0. | Badness: 0.041395 | ||
== Amigo == | == Amigo == | ||
{{ | {{See also| High badness temperaments #Magus }} | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, 2097152/2083725 | [[Comma list]]: 126/125, 2097152/2083725 | ||
{{Mapping|legend=1| 1 -2 2 9 | 0 11 1 -19 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.094 | ||
{{ | {{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 359cc }} | ||
[[Badness]]: 0.110873 | [[Badness]]: 0.110873 | ||
Line 749: | Line 501: | ||
Comma list: 126/125, 176/175, 16384/16335 | Comma list: 126/125, 176/175, 16384/16335 | ||
Mapping: | Mapping: {{mapping| 1 -2 2 9 9 | 0 11 1 -19 -17 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.075 | ||
Optimal | {{Optimal ET sequence|legend=1| 43, 46, 89, 135c, 224c }} | ||
Badness: 0.043438 | Badness: 0.043438 | ||
Line 762: | Line 514: | ||
Comma list: 126/125, 169/168, 176/175, 364/363 | Comma list: 126/125, 169/168, 176/175, 364/363 | ||
Mapping: | Mapping: {{mapping| 1 -2 2 9 9 5 | 0 11 1 -19 -17 -4 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.073 | ||
Optimal | {{Optimal ET sequence|legend=1| 43, 46, 89, 135cf, 224cf }} | ||
Badness: 0.030666 | Badness: 0.030666 | ||
== | == Gilead == | ||
{{ | [[Subgroup]]: 2.3.5.7 | ||
: | |||
[[Comma list]]: 126/125, 343/324 | |||
{{Mapping|legend=1| 1 4 5 6 | 0 -9 -10 -12 }} | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1\1, ~6/5 = 321.109 | |||
* [[POTE]]: ~2 = 1\1, ~6/5 = 321.423 | |||
{{Optimal ET sequence|legend=1| 11cd, 15, 41dd, 56dd }} | |||
[[Badness]]: 0.115292 | |||
== Supersensi == | |||
Supersensi ({{nowrap|8d & 43}}) has supermajor third as a generator like [[sensi]], but the no-fives comma 17496/16807 rather than 245/243 tempered out. | |||
[[ | [[Subgroup]]: 2.3.5.7 | ||
[[ | [[Comma list]]: 126/125, 17496/16807 | ||
{{ | {{Mapping|legend=1| 1 -4 -4 -5 | 0 15 17 21 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/270 = 446.568 | ||
{{ | {{Optimal ET sequence|legend=1| 8d, 35, 43 }} | ||
[[Badness]]: 0. | [[Badness]]: 0.148531 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 126/125, | Comma list: 99/98, 126/125, 864/847 | ||
Mapping: | Mapping: {{mapping| 1 -4 -4 -5 -1 | 0 15 17 21 12 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~72/55 = 446.616 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 35, 43 }} | ||
Badness: 0. | Badness: 0.059449 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 126/125, | Comma list: 78/77, 99/98, 126/125, 144/143 | ||
Mapping: {{mapping| 1 -4 -4 -5 -1 -3 | 0 15 17 21 12 18 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.598 | |||
{{Optimal ET sequence|legend=1| 8d, 35f, 43 }} | |||
Badness: 0.035258 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 78/77, 99/98, 120/119, 126/125, 144/143 | |||
Mapping: | Mapping: {{mapping| 1 -4 -4 -5 -1 -3 0 | 0 15 17 21 12 18 11 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 446.631 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 35f, 43 }} | ||
Badness: 0. | Badness: 0.025907 | ||
== Cobalt == | == Cobalt == | ||
The name of | The name of the cobalt temperament comes from the 27th element. | ||
Cobalt (27 & 81) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]]. | Cobalt ({{nowrap|27 & 81}}) has a period of 1/27 octave and tempers out 126/125 and 540/539, as well as the [[Starling family #Aplonis|aplonis temperament]]. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 126/125, 40353607/40310784 | [[Comma list]]: 126/125, 40353607/40310784 | ||
{{Mapping|legend=1| 27 43 63 76 | 0 -1 -1 -1 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): 1\27, ~3/2 = 701.244 | ||
{{ | {{Optimal ET sequence|legend=1| 27, 81, 108, 135c, 243c }} | ||
[[Badness]]: 0.173308 | [[Badness]]: 0.173308 | ||
Line 836: | Line 613: | ||
Comma list: 126/125, 540/539, 21609/21296 | Comma list: 126/125, 540/539, 21609/21296 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 | 0 -1 -1 -1 -2 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 700.001 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 81, 108 }} | ||
Badness: 0.078060 | Badness: 0.078060 | ||
Line 849: | Line 626: | ||
Comma list: 126/125, 144/143, 196/195, 21609/21296 | Comma list: 126/125, 144/143, 196/195, 21609/21296 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 0 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 700.867 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 81, 108, 243ceef }} | ||
Badness: 0.057145 | Badness: 0.057145 | ||
Line 862: | Line 639: | ||
Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445 | Comma list: 126/125, 144/143, 189/187, 196/195, 1452/1445 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -2 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 700.397 | ||
Optimal | {{Optimal ET sequence|legend=1| 27eg, 81, 108g }} | ||
Badness: 0.042106 | Badness: 0.042106 | ||
Line 875: | Line 652: | ||
Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968 | Comma list: 126/125, 144/143, 171/170, 189/187, 196/195, 969/968 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -2 -1 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 700.429 | ||
Optimal | {{Optimal ET sequence|legend=1| 27eg, 81, 108g }} | ||
Badness: 0.030415 | Badness: 0.030415 | ||
Line 888: | Line 665: | ||
Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968 | Comma list: 126/125, 144/143, 196/195, 221/220, 12005/11968 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 111 | 0 -1 -1 -1 -2 0 -3 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 701.595 | ||
Optimal | {{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ce }} | ||
Badness: 0.047163 | Badness: 0.047163 | ||
Line 901: | Line 678: | ||
Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083 | Comma list: 126/125, 144/143, 196/195, 210/209, 221/220, 1088/1083 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 111 115 | 0 -1 -1 -1 -2 0 -3 -1 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 701.673 | ||
Optimal | {{Optimal ET sequence|legend=1| 27eg, 81gg, 108, 135ceh }} | ||
Badness: 0.034176 | Badness: 0.034176 | ||
Line 914: | Line 691: | ||
Comma list: 126/125, 169/168, 540/539, 975/968 | Comma list: 126/125, 169/168, 540/539, 975/968 | ||
Mapping: | Mapping: {{mapping| 27 43 63 76 94 100 | 0 -1 -1 -1 -2 -1 }} | ||
POTE | Optimal tuning (POTE): 1\27, ~3/2 = 699.179 | ||
Optimal | {{Optimal ET sequence|legend=1| 27e, 54bdef, 81f, 108f }} | ||
Badness: 0.052732 | Badness: 0.052732 | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Starling temperaments| ]] <!-- main article --> | [[Category:Starling temperaments| ]] <!-- main article --> | ||
[[Category:Myna]] | [[Category:Myna]] | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |