|
|
(21 intermediate revisions by 12 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-16 12:35:42 UTC</tt>.<br>
| |
| : The original revision id was <tt>556760633</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>=
| |
|
| |
|
| 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>**<span style="font-size: 13px; line-height: 1.5;">210\359</span>**<span style="font-size: 13px; line-height: 1.5;"> step of </span>**<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>**<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>**<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>**<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>**<span style="font-size: 13px; line-height: 1.5;">203\359</span>**<span style="font-size: 13px; line-height: 1.5;"> of </span>**<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>**
| | == Theory == |
| **Pythagorean diatonic scale: 61 61 27 61 61 61 27**
| | 359edo contains a very close approximation of the pure [[3/2]] fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. In the 5-limit it tempers out the [[würschmidt comma]] and the [[counterschisma]]; in the 7-limit [[2401/2400]] and [[3136/3125]], supporting [[hemiwürschmidt]]; in the 11-limit, [[8019/8000]], providing the [[optimal patent val]] for 11-limit [[hera]]. Due to the fifth being reached at the extremely divisible number of 210 steps, 359edo turns out to be important as an accurate supporting edo of various temperaments that divide the fifth into multiple parts. |
| **Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**</pre></div>
| | |
| <h4>Original HTML content:</h4>
| | 359edo [[support]]s a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America{{citation needed}}; the 678.495{{c}} [[262144/177147|Pythagorean diminished sixth]]; in 359edo this is reached using 203 steps, or 678.55153{{c}}. |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>359edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x359 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span></h1>
| | |
| <br />
| | Pythagorean diatonic scale: 61 61 27 61 61 61 27 |
| 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span><strong><span style="font-size: 13px; line-height: 1.5;">210\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> step of </span><strong><span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span></strong><span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span><strong><span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span></strong><span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span><strong><span style="font-size: 13px; line-height: 1.5;">203\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> of </span><strong><span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span></strong><br />
| | |
| <strong>Pythagorean diatonic scale: 61 61 27 61 61 61 27</strong><br />
| | Exaggerated Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the square root of Pi [+1\359 step of each one]{{clarify}}). |
| <strong>Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).</strong></body></html></pre></div>
| | |
| | === Prime harmonics === |
| | {{Harmonics in equal|359|columns=11}} |
| | |
| | === Subsets and supersets === |
| | 359edo is the 72nd [[prime edo]]. [[718edo]], which doubles it, provides a good correction to the harmonics 5, 13, 17, and 31. |
| | |
| | == Regular temperament properties == |
| | {| class="wikitable center-4 center-5 center-6" |
| | |- |
| | ! rowspan="2" | [[Subgroup]] |
| | ! rowspan="2" | [[Comma list]] |
| | ! rowspan="2" | [[Mapping]] |
| | ! rowspan="2" | Optimal<br />8ve stretch (¢) |
| | ! colspan="2" | Tuning error |
| | |- |
| | ! [[TE error|Absolute]] (¢) |
| | ! [[TE simple badness|Relative]] (%) |
| | |- |
| | | 2.3 |
| | | {{monzo| -569 359 }} |
| | | {{mapping| 359 569 }} |
| | | +0.0016 |
| | | 0.0016 |
| | | 0.05 |
| | |- |
| | | 2.3.5 |
| | | 393216/390625, {{monzo| -69 45 -1 }} |
| | | {{mapping| 359 569 834 }} |
| | | −0.2042 |
| | | 0.2910 |
| | | 8.71 |
| | |- |
| | | 2.3.5.7 |
| | | 2401/2400, 3136/3125, {{monzo| -18 24 -5 -3 }} |
| | | {{mapping| 359 569 834 1008 }} |
| | | −0.2007 |
| | | 0.2521 |
| | | 7.54 |
| | |- |
| | | 2.3.5.7.11 |
| | | 2401/2400, 3136/3125, 8019/8000, 42592/42525 |
| | | {{mapping| 359 569 834 1008 1242 }} |
| | | −0.1729 |
| | | 0.2322 |
| | | 6.95 |
| | |- |
| | | 2.3.5.7.11.13 |
| | | 729/728, 847/845, 1001/1000, 1716/1715, 3136/3125 |
| | | {{mapping| 359 569 834 1008 1242 1328 }} (359f) |
| | | −0.2257 |
| | | 0.2426 |
| | | 7.26 |
| | |} |
| | |
| | === Rank-2 temperaments === |
| | {| class="wikitable center-all left-5" |
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| | |- |
| | ! Periods<br />per 8ve |
| | ! Generator* |
| | ! Cents* |
| | ! Associated<br />ratio* |
| | ! Temperaments |
| | |- |
| | | 1 |
| | | 58\359 |
| | | 193.87 |
| | | 28/25 |
| | | [[Hemiwürschmidt]] |
| | |- |
| | | 1 |
| | | 116\359 |
| | | 387.74 |
| | | 5/4 |
| | | [[Würschmidt]] (5-limit) |
| | |- |
| | | 1 |
| | | 149\359 |
| | | 498.05 |
| | | 4/3 |
| | | [[Counterschismic]] |
| | |} |
| | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
| | |
| | == Music == |
| | ; [[Francium]] |
| | * "This Madness Won't Stop!" from ''End Of Sartorius Membranes'' (2024) – [https://open.spotify.com/track/50O9nTxeMafR8AyBtsPSKa Spotify] | [https://francium223.bandcamp.com/track/this-madness-wont-stop Bandcamp] | [https://www.youtube.com/watch?v=UJyIKzgLVQU YouTube] |
| | |
| | [[Category:3-limit record edos|###]] <!-- 3-digit number --> |
| | [[Category:Hera]] |
| | [[Category:Listen]] |