Undim family: Difference between revisions

Created page with "The '''undim family''' tempers out {{monzo| 41 -20 -4 }}, equating the Pythagorean comma with a stack of four schismas, making it a member of the schismic-Pythagorea..."
 
Tags: Mobile edit Mobile web edit
 
(16 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The '''undim family''' tempers out {{monzo| 41 -20 -4 }}, equating the [[Pythagorean comma]] with a stack of four [[schisma]]s, making it a member of the [[schismic-Pythagorean equivalence continuum]]. It features a quarter-octave period, which acts as the interval separating ~[[256/243]] from ~[[5/4]].  
{{Technical data page}}
The '''undim family''' of [[regular temperaments|temperaments]] [[tempering out|tempers out]] the [[undim comma]], {{monzo| 41 -20 -4 }}, equating the [[Pythagorean comma]] with a stack of four [[schisma]]s. This makes it a member of the [[schismic–Pythagorean equivalence continuum]], with {{nowrap| ''n'' {{=}} 4 }}.  


The second comma of the [[normal comma list]] defines which 7-limit family member we are looking at. Septimal undim (140 & 152) tempers out 5120/5103 (hemifamity). Unlit (152 & 316) does 4375/4374 (ragisma) instead. Twilight (152 & 176) adds 6144/6125 (porwell) to the comma list and splits the period into two – 1/8 of an octave.  
The name ''undim'' was given by [[Petr Pařízek]] in 2011 for it is some sort of opposite to [[diminished (temperament)|diminished]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>.
 
The second comma of the [[normal comma list]] defines which 7-limit family member we are looking at. Septimal undim ({{nowrap| 140 & 152 }}) tempers out 5120/5103 (hemifamity). Unlit ({{nowrap| 152 & 316 }}) does 4375/4374 (ragisma) instead. Twilight ({{nowrap| 152 & 176 }}) adds 6144/6125 (porwell) to the comma list and splits the period into two – 1/8 of an octave.  


== Undim ==
== Undim ==
Subgroup: 2.3.5
Undim features a quarter-octave period, which acts as the [[1215/1024|ptolemaic augmented second (1215/1024)]]. That and five [[4/3|perfect fourths]] (i.e. a minor second, ~[[256/243]]) give the interval class of 5.
 
Note that all versions of undim (ones that do not already map 19 differently and more accurately) have an obvious extension to prime 19 by observing that sharpening 1215/1024 by [[1216/1215]] results in [[19/16]], thus mapping 19/16 to [[4edo|1\4]]. This interpretation is arguably much more harmonically plausible, owing to its simplicity and thereby greater tolerance to mistuning.
 
[[Subgroup]]: 2.3.5


[[Comma list]]: {{monzo| 41 -20 -4 }} = 2199023255552/2179240250625
[[Comma list]]: {{monzo| 41 -20 -4 }}


[[Mapping]]: [{{val| 4 0 41 }}, {{val| 0 1 -5 }}]
{{Mapping|legend=1| 4 0 41 | 0 1 -5 }}


Mapping generators: ~1215/1024, ~3
: mapping generators: ~1215/1024, ~3


[[POTE generator]]: ~3/2 = 702.736
[[Optimal tuning]]s:
* [[CTE]]: ~1215/1024 = 300.0000, ~3/2 = 702.6754
: [[error map]]: {{val| 0.0000 +0.7204 +0.3092 }}
* [[POTE]]: ~1215/1024 = 300.0000, ~3/2 = 702.6054
: error map: {{val| 0.0000 +0.6504 +0.6591 }}


{{Val list|legend=1| 12, 104, 116, 128, 140, 152, 620, 772, 924c, 1076bc, 1228bc }}
{{Optimal ET sequence|legend=1| 12, …, 104, 116, 128, 140, 152, 620, 772, 924c, 1076bc, 1228bc }}


[[Badness]]: 0.241703
[[Badness]] (Smith): 0.241703


== Septimal undim ==
== Septimal undim ==
Subgroup: 2.3.5.7
Septimal undim tempers out the [[dimcomp comma]], mapping ~25/21 to the 1/4-octave period. It can be described as {{nowrap| 12 & 140 }}, and is the unique temperament that equates a syntonic~septimal comma with a stack of three [[marvel comma]]s. A [[Pythagorean comma]] is then found as a stack of four marvel commas. In some 7-limit adaptive-tuning practice, the marvel comma corresponds to a melodic unit called a [[kleisma (interval region)|kleisma]], with three kleismas making a comma, so this temperament may be useful for modeling that. [[292edo]] makes for an excellent tuning.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 5120/5103, 390625/388962
[[Comma list]]: 5120/5103, 390625/388962


[[Mapping]]: [{{val| 4 0 41 81 }}, {{val| 0 1 -5 -11 }}]
{{Mapping|legend=1| 4 0 41 81 | 0 1 -5 -11 }}


{{Multival|legend=1| 4 -20 -44 -41 -81 -46 }}
[[Optimal tuning]]s:
* [[CTE]]: ~25/21 = 300.0000, ~3/2 = 702.7948
: [[error map]]: {{val| 0.0000 +0.8398 -0.2879 +0.4308 }}
* [[POTE]]: ~25/21 = 300.0000, ~3/2 = 702.7362
: error map: {{val| 0.0000 +0.7812 +0.0051 +1.0754 }}


[[POTE generator]]: ~3/2 = 702.736
{{Optimal ET sequence|legend=1| 140, 152, 292 }}


{{Val list|legend=1| 12, 128, 140, 152, 292 }}
[[Badness]] (Smith): 0.062754
 
[[Badness]]: 0.062754


=== 11-limit ===
=== 11-limit ===
Line 38: Line 53:
Comma list: 1375/1372, 5120/5103, 5632/5625
Comma list: 1375/1372, 5120/5103, 5632/5625


Mapping: [{{val| 4 0 41 81 128 }}, {{val| 0 1 -5 -11 -18 }}]
Mapping: {{mapping| 4 0 41 81 128 | 0 1 -5 -11 -18 }}
 
Optimal tunings:
* CTE: ~25/21 = 300.0000, ~3/2 = 702.7433
* POTE: ~25/21 = 300.0000, ~3/2 = 702.6886
 
{{Optimal ET sequence|legend=0| 140, 152, 292, 444d, 596d }}
 
Badness (Smith): 0.034837
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


POTE generator: ~3/2 = 702.689
Comma list: 352/351, 625/624, 847/845, 1375/1372


Vals: {{Val list| 12, 128e, 140, 152, 292, 444d, 596d }}
Mapping: {{mapping| 4 0 41 81 128 148 | 0 1 -5 -11 -18 -21 }}


Badness: 0.034837
Optimal tunings:
* CTE: ~25/21 = 300.0000, ~3/2 = 702.7792
* POTE: ~25/21 = 300.0000, ~3/2 = 702.7363
 
{{Optimal ET sequence|legend=0| 140, 152f, 292 }}
 
Badness (Smith): 0.028172


== Unlit ==
== Unlit ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Comma list: 4375/4374, 2199023255552/2179240250625
[[Comma list]]: 4375/4374, 2199023255552/2179240250625


Mapping: [{{val| 4 0 41 -160 }}, {{val| 0 1 -5 27 }}
{{Mapping|legend=1| 4 0 41 -160 | 0 1 -5 27 }}


POTE generator: ~3/2 = 702.5764
[[Optimal tuning]]s:
* [[CTE]]: ~1215/1024 = 300.0000, ~3/2 = 702.5556
: [[error map]]: {{val| 0.0000 +0.6006 +0.9081 +0.1761 }}
* [[POTE]]: ~1215/1024 = 300.0000, ~3/2 = 702.5764
: error map: {{val| 0.0000 +0.6214 +0.8043 +0.7369 }}


{{Val list|legend=1| 152, 316, 468, 620, 1088bcd, 1708bccdd }}
{{Optimal ET sequence|legend=1| 152, 316, 468, 620, 1088bcd, 1708bccdd }}


Badness: 0.268
[[Badness]] (Smith): 0.268206


=== 11-limit ===
=== 11-limit ===
Line 64: Line 100:
Comma list: 3025/3024, 4375/4374, 5767168/5740875
Comma list: 3025/3024, 4375/4374, 5767168/5740875


Mapping: [{{val| 4 0 41 -160 -113 }}, {{val| 0 1 -5 27 20 }}
Mapping: {{mapping| 4 0 41 -160 -113 | 0 1 -5 27 20 }}


POTE generator: ~3/2 = 702.5826
Optimal tunings:
* CTE: ~1215/1024 = 300.0000, ~3/2 = 702.5582
* POTE: ~1215/1024 = 300.0000, ~3/2 = 702.5826


Vals: {{Val list| 152, 468, 620 }}
{{Optimal ET sequence|legend=0| 152, 468, 620 }}


Badness: 0.0702
Badness (Smith): 0.070215


=== 13-limit ===
=== 13-limit ===
Line 77: Line 115:
Comma list: 1716/1715, 2080/2079, 3025/3024, 1835008/1828125
Comma list: 1716/1715, 2080/2079, 3025/3024, 1835008/1828125


Mapping: [{{val| 4 0 41 -160 -113 -334 }}, {{val| 0 1 -5 27 20 55 }}
Mapping: {{mapping| 4 0 41 -160 -113 -334 | 0 1 -5 27 20 55 }}


POTE generator: ~3/2 = 702.5741
Optimal tunings:
* CTE: ~1215/1024 = 300.0000, ~3/2 = 702.5562
* POTE: ~1215/1024 = 300.0000, ~3/2 = 702.5741


Vals: {{Val list| 152f, 316, 468, 620f, 1088bcdf }}
{{Optimal ET sequence|legend=0| 152f, 316, 468, 620f, 1088bcdf }}


Badness: 0.0584
Badness (Smith): 0.058390


== Twilight ==
== Twilight ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Comma list: 6144/6125, 31470387200/31381059609
[[Comma list]]: 6144/6125, 31470387200/31381059609


Mapping: [{{val| 8 0 82 -79 }}, {{val| 0 1 -5 8 }}
{{Mapping|legend=1| 8 0 82 -79 | 0 1 -5 8 }}


Mapping generators: ~7168/6561, ~3
: mapping generators: ~7168/6561, ~3


POTE tuning: ~3/2 = 702.5090
[[Optimal tuning]]s:
* [[CTE]]: ~7168/6561 = 150.0000, ~3/2 = 702.4765
: [[error map]]: {{val| 0.0000 +0.5215 +1.3036 +0.9865 }}
* [[POTE]]: ~7168/6561 = 150.0000, ~3/2 = 702.5090
: error map: {{val| 0.0000 +0.5540 +1.1415 +1.2457 }}


{{Val list|legend=1| 152, 328, 480, 1592bccddd }}
{{Optimal ET sequence|legend=1| 152, 328, 480, 1592bccddd }}


Badness: 0.213
Badness (Smith): 0.213094


=== 11-limit ===
=== 11-limit ===
Line 105: Line 149:
Comma list: 6144/6125, 9801/9800, 19712/19683
Comma list: 6144/6125, 9801/9800, 19712/19683


Mapping: [{{val| 8 0 82 -79 15 }}, {{val| 0 1 -5 8 1 }}
Mapping: {{mapping| 8 0 82 -79 15 | 0 1 -5 8 1 }}


POTE tuning: ~3/2 = 702.5090
Optimal tunings:
* CTE: ~12/11 = 150.0000, ~3/2 = 702.4692
* POTE: ~12/11 = 150.0000, ~3/2 = 702.5090


Vals: {{Val list| 152, 328, 480, 1112bccddee, 1592bccdddeee }}
{{Optimal ET sequence|legend=0| 152, 328, 480, 1112bccddee, 1592bccdddeee }}


Badness: 0.0480
Badness (Smith): 0.048007


=== 13-limit ===
=== 13-limit ===
Line 118: Line 164:
Comma list: 1716/1715, 2080/2079, 3584/3575, 14641/14625
Comma list: 1716/1715, 2080/2079, 3584/3575, 14641/14625


Mapping: [{{val| 8 0 82 -79 15 -186 }}, {{val| 0 1 -5 8 1 17 }}
Mapping: {{mapping| 8 0 82 -79 15 -186 | 0 1 -5 8 1 17 }}
 
Optimal tunings:
* CTE: ~12/11 = 150.0000, ~3/2 = 702.4168
* POTE: ~12/11 = 150.0000, ~3/2 = 702.4773


POTE tuning: ~3/2 = 702.4773
{{Optimal ET sequence|legend=0| 152f, 328, 480f, 808cdeff }}


Vals: {{Val list| 152f, 328, 480f, 808cdeff }}
Badness (Smith): 0.041365


Badness: 0.0414
== Notes ==


[[Category:Regular temperament theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Undim family| ]] <!-- main article -->
[[Category:Undim family| ]] <!-- main article -->
[[Category:Undim| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]