4L 7s: Difference between revisions

Moremajorthanmajor (talk | contribs)
mNo edit summary
mNo edit summary
 
(21 intermediate revisions by 9 users not shown)
Line 4: Line 4:
| nSmallSteps = 7
| nSmallSteps = 7
| Equalized = 3
| Equalized = 3
| Paucitonic = 1
| Collapsed = 1
| Pattern = LssLssLssLs
| Pattern = LssLssLssLs
}}
}}
{{MOS intro}}
One of the [[harmonic entropy]] minimums in this range is [[Kleismic family|Kleismic/Hanson]].


'''4L 7s''' refers to the structure of [[MOS scale]]s with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 3\11edo (three degrees of 11edo, 327.{{overline|27}}¢), representing approximate diatonic minor thirds ([[6/5]]). One of the [[harmonic entropy]] minimums in this range is [[Kleismic family|Kleismic/Hanson]].
== Name ==
TAMNAMS formerly used the name ''kleistonic'' for the name of this scale (prefix ''klei-''). Other names include '''p-chro smitonic''' or '''smipechromic'''.


4L 7s has a heptatonic subset, which is the [[hard]] end of the spectrum of the [[smitonic]] scale (4L 3s).
== Scale properties ==
{{TAMNAMS use}}


A proposed name for this scale is '''kleistonic''', based on an extension of [[TAMNAMS]] to bigger MOS scales.
=== Intervals ===
{{MOS intervals}}


== Notation ==
=== Generator chain ===
The notation used in this article is LssLsLssLss = АВГДЕЅЗИѲІѦА, based on old Cyrillic numerals 1-10, and the addition of the small yus (Ѧ) for 11 (old "ya" symbolically representing І҃А҃=11). A titlo can be optionally used as a numeric sign (А҃), depending on font rendering, clarity, and style. Chromas are represented by regular sharps and flats.
{{MOS genchain}}


Thus the 15edo gamut is as follows: '''А''' А#/Вb '''В Г Д''' Д#/Еb '''Е Ѕ''' Ѕ#/Зb '''З И Ѳ''' Ѳ#/Іb '''І Ѧ А'''
=== Modes ===
{{MOS mode degrees}}


==== Letter names ====
== Tuning ranges==
The letters can be named in English as such: Az, Vede, Glagol, Dobro, Yest, Dzelo, Zemlya, Izhe, Thita, I (Ee), Yas. They can also be named as numbers 1-11.
 
== Intervals ==
{| class="wikitable center-all"
|-
! Generators
! Notation (1/1 = А҃)
! Interval category name
! Generators
! Notation of 2/1 inverse
! Interval category name
|-
| colspan="6" style="text-align:left" | The 11-note MOS has the following intervals (from some root):
|-
| 0
| А
| perfect unison
| 0
| А
| dodecave (same as octave)
|-
| 1
| Д
| perfect kleifourth (minor third)
| -1
| Ѳ
| perfect kleininth (major sixth)
|-
| 2
| Зb
| minor kleiseventh
| -2
| Ѕ
| major kleisixth
|-
| 3
| Іb
| minor kleitenth
| -3
| Г
| major kleithird
|-
| 4
| Вb
| minor kleisecond
| -4
| Ѧ
| major kleieleventh
|-
| 5
| Еb
| minor kleififth
| -5
| И
| major kleieighth
|-
| 6
| Иb
| minor kleieighth
| -6
| Е
| major kleififth
|-
| 7
| Ѧb
| minor kleieleventh
| -7
| В
| major kleisecond
|-
| 8
| Гb
| minor kleithird
| -8
| І
| major kleitenth
|-
| 9
| Ѕb
| minor kleisixth
| -9
| З
| major kleiseventh
|-
| 10
| Ѳb
| diminished kleininth
| -10
| Д#
| augmented kleithird
|-
| colspan="6" style="text-align:left" | The chromatic 15-note MOS (either [[4L 11s]], [[11L 4s]], or [[15edo]]) also has the following intervals (from some root):
|-
| 11
| Аb
| diminished dodecave
| -11
| А#
| augmented unison (chroma)
|-
| 12
| Дb
| diminished kleifourth
| -12
| Ѳ#
| augmented kleininth
|-
| 13
| Зbb
| diminished kleiseventh
| -13
| Ѕ#
| augmented kleisixth
|-
| 14
| Іbb
| diminished kleitenth
| -14
| Г#
| augmented kleithird
|}
 
== Genchain ==
The generator chain for this scale is as follows:
{| class="wikitable center-all"
|-
| Дb
| Аb
| Ѳb
| Ѕb
| Гb
| Ѧb
| Иb
| Еb
| Вb
| Іb
| Зb
| Д
| А
| Ѳ
| Ѕ
| Г
| Ѧ
| И
| Е
| В
| І
| З
| Д#
| А#
| Ѳ#
| Ѕ#
| Г#
| Ѧ#
| И#
| Е#
| В#
| І#
| З#
|-
| d4
| d12
| d9
| m6
| m3
| m11
| m8
| m5
| m2
| m10
| m7
| P4
| P1
| P9
| M6
| M3
| M11
| M8
| M5
| M2
| M10
| M7
| A4
| A1
| A9
| A6
| A3
| A11
| A8
| A5
| A2
| A10
| A7
|}
 
== Tuning ranges ==
=== Soft range ===
=== Soft range ===
The soft range for tunings of kleistonic encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320¢.
The soft range for tunings of 4L 7s encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than {{nowrap|4\15 {{=}} 320{{c}}}}.


This is the range associated with extensions of [[Orgone|Orgone[7]]]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.
This is the range associated with extensions of [[Orgone|Orgone[7]]]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.


Soft kleistonic edos include [[15edo]] and [[26edo]].
Soft edos include [[15edo]] and [[26edo]].
The sizes of the generator, large step and small step of kleistonic are as follows in various soft kleistonic tunings:
The sizes of the generator, large step and small step of 4L 7s are as follows in various soft tunings:
{| class="wikitable right-2 right-3 right-4"
{| class="wikitable right-2 right-3 right-4"
|-
|-
!
!
![[15edo]] (basic)
! [[15edo]] (basic)
! [[26edo]] (soft)
! [[26edo]] (soft)
! Some JI approximations
! Some JI approximations
Line 247: Line 57:


=== Hypohard ===
=== Hypohard ===
[[File:19EDO_Kleistonic_cheat_sheet.png|400px|thumb|right|Cheat sheet for 19EDO kleistonic, a hard kleistonic tuning]]
Hypohard tunings of 4L 7s have step ratios between 2/1 and 3/1, implying a generator sharper than {{nowrap|5\19 {{=}} 315.79{{c}}}} and flatter than {{nowrap|4\15 {{=}} 320{{c}}}}.
Hypohard tunings of kleistonic have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79¢ and flatter than 4\15 = 320¢.


This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth ([[3/2]]), an octave above. This is the range associated with the eponymous Kleismic (aka [[Hanson]]) temperament and its extensions.
This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth ([[3/2]]), an octave above. This is the range associated with the eponymous Kleismic (aka [[Hanson]]) temperament and its extensions.


Hypohard kleistonic edos include [[15edo]], [[19edo]], and [[34edo]].
Hypohard edos include [[15edo]], [[19edo]], and [[34edo]].
The sizes of the generator, large step and small step of kleistonic are as follows in various hypohard kleistonic tunings:  
The sizes of the generator, large step and small step of 4L 7s are as follows in various hypohard tunings:  
{| class="wikitable right-2 right-3 right-4"
{| class="wikitable right-2 right-3 right-4"
|-
|-
Line 268: Line 77:
| 6/5
| 6/5
|-
|-
| L (octave - 3g)
| L ({{nowrap|octave 3g}})
| 2\15, 160.00
| 2\15, 160.00
| 3\19, 189.47
| 3\19, 189.47
Line 274: Line 83:
| 10/9, 11/10 (in 15edo)
| 10/9, 11/10 (in 15edo)
|-
|-
| s (4g - octave)
| s ({{nowrap|4g octave}})
| 1\15, 80.00
| 1\15, 80.00
| 1\19, 63.16
| 1\19, 63.16
Line 282: Line 91:


=== Parahard ===
=== Parahard ===
Parahard tunings of kleistonic have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
Parahard tunings of 4L 7s have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.


The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.
The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.


Parahard kleistonic edos include [[19edo]], 23[[23edo|edo]], and [[42edo]].
Parahard edos include [[19edo]], 23[[23edo|edo]], and [[42edo]].
The sizes of the generator, large step and small step of kleistonic are as follows in various parahard kleistonic tunings:
The sizes of the generator, large step and small step of 4L 7s are as follows in various parahard tunings:
{| class="wikitable right-2 right-3 right-4"
{| class="wikitable right-2 right-3 right-4"
|-
|-
!
!
![[19edo]] (hard)
! [[19edo]] (hard)
![[23edo]] (superhard)
! [[23edo]] (superhard)
! [[42edo]] (parahard)
! [[42edo]] (parahard)
! Some JI approximations
! Some JI approximations
Line 302: Line 111:
| 6/5
| 6/5
|-
|-
| L (octave - 3g)
| L ({{nowrap|octave 3g}})
| 3\19, 189.47
| 3\19, 189.47
| 4\23, 208.70
| 4\23, 208.70
Line 308: Line 117:
| 10/9, 9/8
| 10/9, 9/8
|-
|-
| s (4g - octave)
| s ({{nowrap|4g octave}})
| 1\19, 63.16
| 1\19, 63.16
| 1\23, 52.17
| 1\23, 52.17
Line 315: Line 124:
|}
|}


=== Hyperhard ===
=== Hyperhard===
Hyperhard tunings of kleistonic have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.
Hyperhard tunings of 4L 7s have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.


The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above.
The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above.
These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.
These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.


Hyperhard kleistonic edos include [[23edo]], [[31edo]], and [[27edo]].
Hyperhard edos include [[23edo]], [[31edo]], and [[27edo]].
The sizes of the generator, large step and small step of kleistonic are as follows in various hyperhard kleistonic tunings:
The sizes of the generator, large step and small step of 4L 7s are as follows in various hyperhard tunings:
{| class="wikitable right-2 right-3 right-4"
{| class="wikitable right-2 right-3 right-4"
|-
|-
Line 337: Line 146:
| 6/5
| 6/5
|-
|-
| L (octave - 3g)
| L ({{nowrap|octave 3g}})
| 4\23, 208.70
| 4\23, 208.70
| 6\31, 232.26
| 6\31, 232.26
Line 343: Line 152:
| 8/7, 9/8
| 8/7, 9/8
|-
|-
| s (4g - octave)
| s ({{nowrap|4g octave}})
| 1\23, 52.17
| 1\23, 52.17
| 1\31, 38.71
| 1\31, 38.71
| 1\27, 44.44
| 1\27, 44.44
| 36/35, 45/44
| 36/35, 45/44
|}
== Modes ==
The names are based on smitonic modes, modified with the "super-" prefix, with thematic additions, as there are an extra 4 modes available.
{| class="wikitable center-all"
|-
! Mode
! [[Modal UDP Notation|UDP]]
! Name
|-
| LsLssLssLss
| <nowiki>10|0</nowiki>
| Supernerevarine
|-
| LssLsLssLss
| <nowiki>9|1</nowiki>
| Supervivecan
|-
| LssLssLsLss
| <nowiki>8|2</nowiki>
| Superbaardauan
|-
| LssLssLssLs
| <nowiki>7|3</nowiki>
| Superlorkhanic
|-
| sLsLssLssLs
| <nowiki>6|4</nowiki>
| Supervvardenic
|-
| sLssLsLssLs
| <nowiki>5|5</nowiki>
| Supersothic
|-
| sLssLssLsLs
| <nowiki>4|6</nowiki>
| Supernumidian
|-
| sLssLssLssL
| <nowiki>3|7</nowiki>
| Superkagrenacan
|-
| ssLsLssLssL
| <nowiki>2|8</nowiki>
| Supernecromic
|-
| ssLssLsLssL
| <nowiki>1|9</nowiki>
| Superalmalexian
|-
| ssLssLssLsL
| <nowiki>0|10</nowiki>
| Superdagothic
|}
|}


== Temperaments ==
== Temperaments ==
== Scales ==
== Scales ==
* [[Oregon11]]
* [[Oregon11]]
Line 415: Line 169:


== Scale tree ==
== Scale tree ==
The spectrum looks like this:
{{MOS tuning spectrum
{| class="wikitable center-all"
| 6/5 = [[Oregon]]
! colspan="6" rowspan="2" | Generator
| 10/7 = [[Orgone]]
! colspan="2" | Cents
| 11/7 = [[Magicaltet]]
! colspan="2" |1500edo
| 13/8 = Golden superklesimic
! rowspan="2" | L
| 5/3 = [[Superkleismic]]
! rowspan="2" | s
| 7/3 = [[Catalan]]
! rowspan="2" | L/s
| 13/5 = [[Countercata]]
! rowspan="2" | Comments
| 8/3 = [[Hanson]]/[[cata]]
|-
| 11/4 = [[Catakleismic]]
! Chroma-positive
| 10/3 = [[Parakleismic]]
! Chroma-negative
| 9/2 = [[Oolong]]
!Chroma-positive
| 5/1 = [[Starlingtet]]
!Chroma-negative
| 6/1 = [[Myna]]
|-
}}
| 8\11 || || || || || || 872.{{overline|72}}|| 327.{{overline|27}}
 
|1090.{{overline|90}}
== Gallery ==
|409.{{overline|09}}|| 1 || 1 || 1.000 ||
[[File:19EDO_Kleistonic_cheat_sheet.png|825x825px|thumb|Cheat sheet for 19EDO, a hard tuning for 4L&nbsp;7s (or kleistonic).|alt=|left]]
|-
| || || 43\59||  || ||  || 874.576… || 325.423…
|1093.220…
|406.779…|| 6 || 5 || 1.200 || Oregon
|-
| || 35\48||  || ||  ||  || 875.000 || 325.000
|1093.75
|406.25|| 5 || 4 || 1.250 ||
|-
| || || 62\85||  || ||  || 875.294… || 324.705…
|1094.117…
|405.882…|| 9 || 7 || 1.286 ||
|-
| 27\37||  || ||  ||  || || 875.{{overline|675}}|| 324.{{overline|324}}
|1094.{{overline|594}}
|405.{{overline|405}}|| 4 || 3 || 1.333 ||
|-
| || || 73\100||  || ||  || 876.000 || 324.000
|1095
|405|| 11 || 8 || 1.375 ||
|-
| || 46\63||  || ||  ||  || 876.190… || 323.809…
|1095.238…
|404.761…|| 7 || 5 || 1.400 ||
|-
| || || 65\89||  || ||  || 876.404… || 323.595…
|1095.505…
|404.494…|| 10 || 7 || 1.428 || Orgone
|-
| 19\26||  ||  ||  || || || 876.923… || 323.076…
|1096.153…
|403.846…|| 3 || 2 || 1.500 || L/s = 3/2
|-
| || || 68\93||  || ||  || 877.419… || 322.580…
|1096.774…
|403.225…|| 11 || 7 || 1.571 || Magicaltet
|-
| || 49\67||  || ||  ||  || 877.611… || 322.388…
|1097.014…
|402.985…|| 8 || 5 || 1.600 ||
|-
| || || 79\108||  || ||  || 877.{{overline|7}}|| 322.{{overline|2}}
|1097.{{overline|2}}
|402.{{overline|7}}|| 13 || 8 || 1.625 || Golden superkleismic
|-
| || 30\41||  ||  ||  || || 878.048… || 321.951…
|1097.560…
|402.439…|| 5 || 3 || 1.667 || Superkleismic
|-
| || || 71\97||  || ||  || 878.350… || 321.649…
|1097.938…
|402.061…|| 12 || 7 || 1.714 ||
|-
| || 41\56||  || ||  ||  || 878.571… || 321.428…
|1098.214…
|401.785…|| 7 || 4 || 1.750 ||
|-
| || || 52\71||  || ||  || 878.873… || 321.126…
|1098.591…
|401.408…|| 9 || 5 || 1.800 ||
|-
|
|
|
|63\86
|
|
|879.069…
|320.930…
|1098.837…
|401.162…
|11
|6
|1.833
|
|-
|
|
|
|
|74\101
|
|879.207…
|320.792…
|1099.009…
|400.990…
|13
|7
|1.857
|
|-
| 11\15||  ||  ||  ||  ||  || 880.000 || 320.000
|1100
|400|| 2 || 1 || 2.000 || Basic kleistonic<br>(Generators smaller than this are proper)
|-
|
|
|
|
|
|80\109
|880.733…
|319.266…
|1100.917…
|399.092…
|15
|7
|2.143
|
|-
|
|
|
|
|69\94
|
|880.851…
|319.148…
|1101.063…
|398.936…
|13
|6
|2.167
|
|-
|
|
|
|58\79
|
|
|881.012…
|318.987…
|1101.265…
|398.734…
|11
|5
|2.200
|
|-
|  ||  || 47\64||  ||  ||  || 881.250 || 318.750
|1101.5625
|398.4375|| 9 || 4 || 2.250 ||
|-
|  || 36\49||  ||  ||  ||  || 881.632… || 318.367…
|1102.040…
|397.959…|| 7 || 3 || 2.333 || Catalan
|-
|  ||  || 61\83||  ||  ||  || 881.927… || 318.072…
|1102.409…
|397.590…|| 12 || 5 || 2.400 ||
|-
|  || 25\34||  ||  ||  ||  || 882.352… || 317.647…
|1102.941…
|397.059…|| 5 || 2 || 2.500 ||
|-
|  ||  || 64\87||  ||  ||  || 882.758… || 317.241…
|1103.448…
|396.551…|| 13 || 5 || 2.600 || Countercata
|-
|  || 39\53||  ||  ||  ||  || 883.018… || 316.981…
|1103.773…
|396.226…|| 8 || 3 || 2.667 || Hanson/cata
|-
|  ||  || 53\72||  ||  ||  || 883.{{overline|3}}|| 316.{{overline|6}}
|1104.1{{overline|6}}
|395.8{{overline|3}}|| 11 || 4 || 2.750 || Catakleismic
|-
| 14\19||  ||  ||  ||  ||  || 884.210… || 315.789…
|1105.263…
|394.736…|| 3 || 1 || 3.000 || L/s = 3/1
|-
|  ||  ||  || 45\61||  ||  || 885.245… || 314.754…
|1106.557…
|393.442…|| 10 || 3 || 3.333 || Parakleismic
|-
|  ||  || 31\42||  ||  ||  || 885.714… || 314.285…
|1107.142…
|392.857…|| 7 || 2 || 3.500 ||
|-
|  ||  ||  || 48\65||  ||  || 886.153… || 313.846…
|1107.692…
|392.307…|| 11 || 3 || 3.667 ||
|-
|  || 17\23||  ||  ||  ||  || 886.956… || 313.043…
|1108.695…
|391.304…|| 4 || 1 || 4.000 ||
|-
|
|
|
|
|54\73
|
|887.671…
|312.328…
|1109.589…
|390.410…
|13
|3
|4.333
|
|-
|  ||  ||  || 37\50||  ||  || 888.000 || 312.000
|1110
|390|| 9 || 2 || 4.500 || Oolong
|-
|
|
|
|
|57\77
|
|888.311…
|311.888…
|1110.389…
|389.610…
|14
|3
|4.667
|
|-
|  ||  || 20\27||  ||  ||  || 888.{{overline|8}}|| 311.{{overline|1}}
|1111.{{overline|1}}
|388.{{overline|8}}|| 5 || 1 || 5.000 || Starlingtet
|-
|
|
|
|
|43\58
|
|889.655…
|310.344…
|1112.068…
|387.931…
|11
|2
|5.500
|
|-
|  ||  ||  || 23\31||  ||  || 890.322… || 309.677…
|1112.903…
|387.096…|| 6 || 1 || 6.000 || Myna
|-
| 3\4 ||  ||  ||  ||  ||  || 900.000 || 300.000
|1125
|375|| 1 || 0 || → inf ||
|}


[[Category:Scales]]
[[Category:Abstract MOS patterns]]
[[Category:11-tone scales]]
[[Category:11-tone scales]]
[[Category:Kleistonic]] <!-- main article -->
[[Category:Kleistonic]] <!-- main article -->