Canousmic temperaments: Difference between revisions

m Precision
Tags: Mobile edit Mobile web edit
 
(19 intermediate revisions by 8 users not shown)
Line 1: Line 1:
These are rank-2 temperaments that temper out the [[canousma]], 4802000/4782969 = {{monzo| 4 -14 3 4 }}. For the rank-3 temperament, see [[Canou family]].  
{{Technical data page}}
This is a collection of rank-2 temperaments that temper out the [[canousma]], 4802000/4782969 = {{monzo| 4 -14 3 4 }}. For the rank-3 temperament, see [[Canou family]].  


Note that 4802000/4782969 = 2×([[10/9]])<sup>3</sup>/([[9/7]])<sup>4</sup>, these intervals tend to have lower complexity.
Temperaments discussed elsewhere are:
* [[Godzilla]] (+49/48 or 81/80) → [[Slendro clan #Godzilla|Slendro clan]]
* ''[[Betic]]'' (+225/224) → [[Sycamore family #Betic|Sycamore family]]
* ''[[Pentorwell]]'' (+1728/1715) → [[Orwellismic temperaments #Pentorwell|Orwellismic temperaments]]
* ''[[Amicable]]'' (+2401/2400) → [[Breedsmic temperaments #Amicable|Breedsmic temperaments]]
* [[Parakleismic]] (+3136/3125 or 4375/4374) → [[Ragismic microtemperaments #Parakleismic|Ragismic microtemperaments]]
* ''[[Septiquarter]]'' (+5120/5103) → [[Hemifamity temperaments #Septiquarter|Hemifamity temperaments]]
* ''[[Marthirds]]'' (+15625/15552) → [[Kleismic family #Marthirds|Kleismic family]]
* ''[[Kleischismic]]'' (+32805/32768) → [[Schismatic family #Kleischismic|Schismatic family]]
* ''[[Kaboom]]'' (+65625/65536) → [[Vavoom family #Kaboom|Vavoom family]]
* ''[[Quartiquart]]'' (+390625/388962) → [[Quartonic family #Quartiquart|Quartonic family]]
* ''[[Turkey (temperament)|Turkey]]'' (+5250987/5242880) → [[Vulture family #Turkey|Vulture family]]
* ''[[Hemiquindromeda]]'' (+67108864/66976875) → [[Quindromeda family #Hemiquindromeda|Quindromeda family]]
* ''[[Semiluna]]'' (+95703125/95551488) → [[Luna family #Semiluna|Luna family]]


Temperaments not dicussed here include:
Considered below are satin and superlimmal.
* [[godzilla]], {49/48, 81/80} → [[Meantone family #Godzilla]]
* ''[[betic]]'', {225/224, 1071875/1062882} → [[Sycamore family #Betic]]
* ''[[pentorwell]]'', {1728/1715, 179200/177147} → [[Orwellismic temperaments #Pentorwell]]
* ''[[amicable]]'', {2401/2400, 1600000/1594323} → [[Breedsmic temperaments #Amicable]]
* [[parakleismic]], {3136/3125, 4375/4374} → [[Ragismic microtemperaments #Parakleismic]]
* ''[[septiquarter]]'', {5120/5103, 420175/419904} → [[Hemifamity temperaments #Septiquarter]]
* ''[[marthirds]]'', {15625/15552, 2460375/2458624} → [[Kleismic family #Marthirds]]
* ''[[kleischismic]]'', {32805/32768, 1562500/1492992} → [[Schismatic family #Kleischismic]]
 
Discussed below are satin, superlimmal and semiluna.  


== Satin ==
== Satin ==
=== 5-limit ===
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Satin]].''
 
Subgroup: 2.3.5
 
[[Comma list]]: {{monzo|104 -70 3}}
 
[[Mapping]]: [{{val| 1 2 12 }}, {{val| 0 -3 -70 }}]
 
[[POTE generator]]: ~{{monzo|-34 23 -1}} = 165.907
 
{{Val list|legend=1| 94, 217, 528, 745, 1273 }}
 
[[Badness]]: 2.8530


=== 7-limit ===
The satin temperament (94 &amp; 217) uses [[11/10]] as a generator, three of them gives [[4/3]], and tempers out both the [[rainy comma]] and the canousma.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2100875/2097152, 4802000/4782969
[[Comma list]]: 2100875/2097152, 4802000/4782969


[[Mapping]]: [{{val| 1 2 12 -3 }}, {{val| 0 -3 -70 42 }}]
{{Mapping|legend=1| 1 2 12 -3 | 0 -3 -70 42 }}


[[POTE generator]]: ~8575/7776 = 165.913
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8575/7776 = 165.913


{{Val list|legend=1| 94, 217, 311, 839, 1150 }}
{{Optimal ET sequence|legend=1| 94, 217, 311, 839, 1150 }}


[[Badness]]: 0.1972
[[Badness]]: 0.197207


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4000/3993, 19712/19683, 41503/41472
Comma list: 4000/3993, 19712/19683, 41503/41472


Mapping: [{{val| 1 2 12 -3 13 }}, {{val| 0 -3 -70 42 -69 }}]
Mapping: {{mapping| 1 2 12 -3 13 | 0 -3 -70 42 -69 }}


POTE generator: ~11/10 = 165.915
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.915


Vals: {{Val list| 94, 217, 311 }}
{{Optimal ET sequence|legend=1| 94, 217, 311 }}


Badness: 0.0580
Badness: 0.057972


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1575/1573, 2080/2079, 4096/4095, 13720/13689
Comma list: 1575/1573, 2080/2079, 4096/4095, 13720/13689


Mapping: [{{val| 1 2 12 -3 13 -1 }}, {{val| 0 -3 -70 42 -69 34 }}]
Mapping: {{mapping| 1 2 12 -3 13 -1 | 0 -3 -70 42 -69 34 }}


POTE generator: ~11/10 = 165.914
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914


Vals: {{Val list| 94, 217, 311, 839e, 1150e }}
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150e }}


Badness: 0.0303
Badness: 0.030316


=== 17-limit ===
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 595/594, 833/832, 1156/1155, 1575/1573, 4096/4095
Comma list: 595/594, 833/832, 1156/1155, 1575/1573, 4096/4095


Mapping: [{{val| 1 2 12 -3 13 -1 11 }}, {{val| 0 -3 -70 42 -69 34 -50 }}]
Mapping: {{mapping| 1 2 12 -3 13 -1 11 | 0 -3 -70 42 -69 34 -50 }}


POTE generator: ~11/10 = 165.913
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913


Vals: {{Val list| 94, 217, 311, 839e, 1150eg }}
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150eg }}


Badness: 0.0200
Badness: 0.020007


=== 19-limit ===
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215, 1575/1573
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215, 1575/1573


Mapping: [{{val| 1 2 12 -3 13 -1 11 16 }}, {{val| 0 -3 -70 42 -69 34 -50 -85 }}]
Mapping: {{mapping| 1 2 12 -3 13 -1 11 16 | 0 -3 -70 42 -69 34 -50 -85 }}


POTE generator: ~11/10 = 165.913
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913


Vals: {{Val list| 94, 217, 311, 839e, 1150eg }}
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150eg }}


Badness: 0.0145
Badness: 0.014479


=== 23-limit ===
=== 23-limit ===
Subgroup: 2.3.5.7.11.13.17.19.23
Subgroup: 2.3.5.7.11.13.17.19.23


Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1105/1104, 1156/1155
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1105/1104, 1156/1155


Mapping: [{{val| 1 2 12 -3 13 -1 11 16 16 }}, {{val| 0 -3 -70 42 -69 34 -50 -85 -83 }}]
Mapping: {{mapping| 1 2 12 -3 13 -1 11 16 16 | 0 -3 -70 42 -69 34 -50 -85 -83 }}


POTE generator: ~11/10 = 165.914
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914


Vals: {{Val list| 94, 217, 311, 839ei, 1150egi }}
{{Optimal ET sequence|legend=1| 94, 217, 311, 839ei, 1150egi }}


Badness: 0.0122
Badness: 0.012158


== Superlimmal ==
== Superlimmal ==
The superlimmal temperament uses an ever slightly sharpened [[27/25|large limma]] as the generator, nine exceed the octave by [[126/125]]. It can be described as 80 & 311. It gets all the primes up to 29 reasonably covered, but still acceptible just as a 13-limit microtemperament, judging from its comma basis. The 80-tone [[MOS scale]] is presumably the place to start, and a 151-tone MOS is possible.  
The superlimmal temperament (80 &amp; 311) uses an ever slightly sharpened [[27/25|large limma]] as the generator, nine exceed the octave by [[126/125]]. It gets all the primes up to 29 reasonably covered, but still acceptable just as a 13-limit microtemperament, judging from its [[comma basis]]. While the [[mos scale]] may not be the most effective approach, the 80-tone mos is presumably the place to start if it is used. It can also be extended to prime 37 by tempering out ([[27/25]])/([[40/37]]) = [[1000/999]], where 40/37 is notably the mediant of [[27/25]] and [[13/12]], which could be interpreted as an explanation of the sharpened limma.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4802000/4782969, 52734375/52706752
[[Comma list]]: 4802000/4782969, 52734375/52706752


[[Mapping]]: [{{val| 1 8 12 18 }}, {{val| 0 -57 -86 -135 }}]
{{Mapping|legend=1| 1 8 12 18 | 0 -57 -86 -135 }}


{{Multival|legend=1| 57 86 135 3 53 72 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/25 = 135.0464


[[POTE generator]]: ~27/25 = 135.0464
{{Optimal ET sequence|legend=1| 80, 231, 311, 1324b, 1635b }}


{{Val list|legend=1| 80, 231, 311, 1324b, 1635b }}
[[Badness]]: 0.252387
 
[[Badness]]: 0.2524


=== 11-limit ===
=== 11-limit ===
Line 136: Line 121:
Comma list: 3025/3024, 4000/3993, 1479016/1476225
Comma list: 3025/3024, 4000/3993, 1479016/1476225


Mapping: [{{val| 1 8 12 18 11 }}, {{val| 0 -57 -86 -135 -67 }}]
Mapping: {{mapping| 1 8 12 18 11 | 0 -57 -86 -135 -67 }}


POTE generator: ~27/25 = 135.0455
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0455


Vals: {{val list| 80, 231, 311, 1013e, 1324be }}
{{Optimal ET sequence|legend=1| 80, 231, 311, 1013e, 1324be }}


Badness: 0.0607
Badness: 0.060667


=== 13-limit ===
=== 13-limit ===
Line 149: Line 134:
Comma list: 3025/3024, 4000/3993, 4225/4224, 4459/4455
Comma list: 3025/3024, 4000/3993, 4225/4224, 4459/4455


Mapping: [{{val| 1 8 12 18 11 1 }}, {{val| 0 -57 -86 -135 -67 24 }}]
Mapping: {{mapping| 1 8 12 18 11 1 | 0 -57 -86 -135 -67 24 }}


POTE generator: ~27/25 = 135.0446
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0446


Vals: {{val list| 80, 231, 311, 702, 1013e }}
{{Optimal ET sequence|legend=1| 80, 231, 311, 702, 1013e }}


Badness: 0.0390
Badness: 0.039017


=== 17-limit ===
=== 17-limit ===
Line 162: Line 147:
Comma list: 595/594, 1275/1274, 2500/2499, 3025/3024, 4225/4224
Comma list: 595/594, 1275/1274, 2500/2499, 3025/3024, 4225/4224


Mapping: [{{val| 1 8 12 18 11 1 6 }}, {{val| 0 -57 -86 -135 -67 24 -17 }}]
Mapping: {{mapping| 1 8 12 18 11 1 6 | 0 -57 -86 -135 -67 24 -17 }}


POTE generator: ~27/25 = 135.0462
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0462


Vals: {{val list| 80, 231, 311 }}
{{Optimal ET sequence|legend=1| 80, 231, 311 }}


Badness: 0.0301
Badness: 0.030077


=== 19-limit ===
=== 19-limit ===
Line 175: Line 160:
Comma list: 595/594, 969/968, 1275/1274, 1445/1444, 1729/1728, 2500/2499
Comma list: 595/594, 969/968, 1275/1274, 1445/1444, 1729/1728, 2500/2499


Mapping: [{{val| 1 8 12 18 11 1 6 11 }}, {{val| 0 -57 -86 -135 -67 24 -17 -60 }}]
Mapping: {{mapping| 1 8 12 18 11 1 6 11 | 0 -57 -86 -135 -67 24 -17 -60 }}


POTE generator: ~27/25 = 135.0464
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0464


Vals: {{val list| 80, 231, 311 }}
{{Optimal ET sequence|legend=1| 80, 231, 311 }}


Badness: 0.0205
Badness: 0.020460


=== 23-limit ===
=== 23-limit ===
Line 188: Line 173:
Comma list: 595/594, 760/759, 969/968, 1105/1104, 1275/1274, 1445/1444, 1496/1495
Comma list: 595/594, 760/759, 969/968, 1105/1104, 1275/1274, 1445/1444, 1496/1495


Mapping: [{{val| 1 8 12 18 11 1 6 11 7 }}, {{val| 0 -57 -86 -135 -67 24 -17 -60 -22 }}]
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 | 0 -57 -86 -135 -67 24 -17 -60 -22 }}


POTE generator: ~27/25 = 135.0458
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0458


Vals: {{val list| 80, 231, 311 }}
{{Optimal ET sequence|legend=1| 80, 231, 311 }}


Badness: 0.0161
Badness: 0.016146


=== 29-limit ===
=== 29-limit ===
Line 201: Line 186:
Comma list: 595/594, 760/759, 784/783, 969/968, 1045/1044, 1105/1104, 1275/1274, 1496/1495
Comma list: 595/594, 760/759, 784/783, 969/968, 1045/1044, 1105/1104, 1275/1274, 1496/1495


Mapping: [{{val| 1 8 12 18 11 1 6 11 7 16 }}, {{val| 0 -57 -86 -135 -67 24 -17 -60 -22 -99 }}]
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 16 | 0 -57 -86 -135 -67 24 -17 -60 -22 -99 }}
 
POTE generator: ~27/25 = 135.0460
 
Vals: {{val list| 80, 231, 311 }}
 
Badness: 0.0131


== Semiluna ==
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460
{{see also|Luna family #Semiluna}}


Subgroup: 2.3.5.7
{{Optimal ET sequence|legend=1| 80, 231, 311 }}


[[Comma list]]: 4802000/4782969, 95703125/95551488
Badness: 0.013054


[[Mapping]]: [{{val| 2 8 4 23 }}, {{val| 0 -15 2 -54 }}]
=== No-31's 37-limit ===
 
Subgroup: 2.3.5.7.11.13.17.19.23.29.37
[[POTE generator]]: ~2187/1960 = 193.1725
 
{{Val list|legend=1| 56d, 118, 292, 410 }}
 
[[Badness]]: 0.1922
 
=== 11-limit ===
 
Subgroup: 2.3.5.7.11


Comma list: 5632/5625, 9801/9800, 14641/14580
Comma list: 595/594, 760/759, 784/783, 925/924, 969/968, 1000/999, 1045/1044, 1105/1104, 1275/1274


Mapping: [{{val| 2 8 4 23 14 }}, {{val| 0 -15 2 -54 -22 }}]
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 16 15 | 0 -57 -86 -135 -67 24 -17 -60 -22 -99 -87 }}


POTE generator: ~121/108 = 193.1732
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460


Vals: {{Val list| 56d, 118, 292, 410 }}
{{Optimal ET sequence|legend=1| 80, 231, 311 }}


Badness: 0.0678
Badness: 0.010901


[[Category:Regular temperament theory]]
[[Category:Temperament collections]]
[[Category:Temperament collection]]
[[Category:Pages with mostly numerical content]]
[[Category:Canou]]
[[Category:Canousmic temperaments| ]] <!-- main article -->
[[Category:Canou| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]