Keemic temperaments: Difference between revisions
m Edo lists reviewed |
m Text replacement - "Category:Temperament collections" to "Category:Temperament collections Category:Pages with mostly numerical content" |
||
(35 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
These temper out the keema, {{monzo| -5 -3 3 1 }} = [[875/864]] | These temper out the keema, {{monzo| -5 -3 3 1 }} = [[875/864]] = {{S|5/S6}}, whose fundamental equivalence entails that [[6/5]] is sharpened so that it stacks three times to reach [[7/4]], and the interval between 6/5 and [[5/4]] is compressed so that [[7/6]] - 6/5 - 5/4 - [[9/7]] are set equidistant from each other. As the [[Keemic family#Undecimal supermagic|canonical extension]] of rank-3 keemic to the [[11-limit]] tempers out the commas [[100/99]] and [[385/384]] (whereby ([[6/5]])<sup>2</sup> is identified with [[16/11]]), this provides a clean way to extend the various keemic temperaments to the 11-limit as well. | ||
Full [[7-limit]] keemic temperaments discussed elsewhere are: | |||
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]] | |||
* ''[[Doublewide]]'' (+50/49) → [[Jubilismic clan #Doublewide|Jubilismic clan]] | |||
* [[Porcupine]] (+64/63) → [[Porcupine family #Septimal porcupine|Porcupine family]] | |||
* [[Flattone]] (+81/80) → [[Meantone family #Flattone|Meantone family]] | |||
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]] | |||
* ''[[Sycamore]]'' (+686/675) → [[Sycamore family #Septimal sycamore|Sycamore family]] | |||
* [[Superkleismic]] (+1029/1024) → [[Gamelismic clan #Superkleismic|Gamelismic clan]] | |||
* ''[[Undeka]]'' (+3200/3087) → [[11th-octave temperaments #Undeka|11th-octave temperaments]] | |||
Discussed below are quasitemp, chromo, barbad, hyperkleismic, and sevond. | |||
== Quasitemp == | |||
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Quasitemp]].'' | |||
Quasitemp is a full 7-limit strong extension of [[gariberttet]], the 2.5/3.7/3 subgroup temperament defined by tempering out [[3125/3087]]. In gariberttet, three generators reach [[5/3]] and five reach [[7/3]], so that the generator itself has the interpretation of [[25/21]] (which is equated to [[13/11]] in the 13-limit extension). This implies that 3:5:7 and 5:6:7 chords are reached rather quickly. In quasitemp, tempering out 875/864 entails that [[8/7]] is found after 9 generators, from which the mappings of 3 and 5 follow. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 2401/2400 | |||
{{Mapping|legend=1| 1 5 5 5 | 0 -14 -11 -9 }} | |||
: Mapping generators: ~2, ~25/21 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 292.710 | |||
{{Optimal ET sequence|legend=1| 4, 37, 41 }} | |||
Badness: 0. | [[Badness]]: 0.060269 | ||
== 11-limit == | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 1375/1372 | |||
Mapping: {{mapping| 1 5 5 5 2 | 0 -14 -11 -9 6 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.547 | |||
Badness: 0. | {{Optimal ET sequence|legend=1| 4, 37, 41, 119 }} | ||
Badness: 0.043209 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 196/195, 275/273, 385/384 | |||
Mapping: {{mapping| 1 5 5 5 2 2 | 0 -14 -11 -9 6 7 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.457 | |||
{{Optimal ET sequence|legend=1| 4, 37, 41, 78, 119f }} | |||
Badness: 0.032913 | |||
=== Quato === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 441/440, 625/616 | |||
Mapping: {{mapping| 1 5 5 5 12 | 0 -14 -11 -9 -35 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.851 | |||
{{Optimal ET sequence|legend=1| 41, 127cd, 168cd }} | |||
Badness: 0.041170 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 105/104, 243/242, 275/273, 325/324 | |||
Mapping: {{mapping| 1 5 5 5 12 12 | 0 -14 -11 -9 -35 -34 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.928 | |||
{{Optimal ET sequence|legend=1| 41, 86ce, 127cd }} | |||
Badness: 0.030081 | |||
== Chromo == | |||
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Chromo]].'' | |||
Chromo represents the [[13edf]] chain as a rank-2 temperament, with [[6/5]] and [[5/4]] mapped to 6 and 7 steps, respectively. Since the difference of those two intervals is abbreviated considerably from just, keemic provides the most meaningful 7-limit extension (setting [[7/6]], 6/5, 5/4, [[9/7]] equidistant) so that the temperament then approximates the [[4:5:6:7]] tetrad with 0:7:13:18 generator steps. | |||
Note that if one allows a more complex mapping for prime 7 and wants a larger prime limit, one may prefer [[escapade]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 2430/2401 | |||
{{Mapping|legend=1| 1 1 2 2 | 0 13 7 18 }} | |||
: Mapping generators: ~2, ~25/24 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/24 = 53.816 | |||
{{Optimal ET sequence|legend=1| 22, 45, 67c }} | |||
[[Badness]]: 0.090769 | |||
== Barbad == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 16875/16807 | |||
{{Mapping|legend=1| 1 9 7 11 | 0 -19 -12 -21 }} | |||
: Mapping generators: ~2, ~98/75 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~98/75 = 468.331 | |||
{{Optimal ET sequence|legend=1| 18, 23d, 41 }} | |||
[[Badness]]: 0.110448 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/242, 540/539, 625/616 | |||
Mapping: {{mapping| 1 9 7 11 14 | 0 -19 -12 -21 -27 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.367 | |||
{{Optimal ET sequence|legend=1| 18e, 23de, 41, 228ccdd }} | |||
Badness: 0.050105 | |||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 144/143, 196/195, 245/242, 275/273 | |||
Mapping: {{mapping| 1 9 7 11 14 8 | 0 -19 -12 -21 -27 -11 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 468.270 | |||
{{Optimal ET sequence|legend=1| 18e, 23de, 41 }} | |||
Badness: 0.039183 | |||
== Hyperkleismic == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 51200/50421 | |||
{{Mapping|legend=1| 1 -3 -2 2 | 0 17 16 3 }} | |||
: Mapping generators: ~2, ~6/5 | |||
POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 323.780 | ||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
[[Badness]]: 0.157830 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 2420/2401 | |||
Mapping: {{mapping| 1 -3 -2 2 4 | 0 17 16 3 -2}} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.796 | |||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
Badness: 0. | Badness: 0.065356 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 169/168, 275/273, 385/384 | |||
Mapping: {{mapping| 1 -3 -2 2 4 1 | 0 17 16 3 -2 10 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.790 | ||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
Badness: 0.035724 | |||
== Sevond == | |||
10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 327680/321489 | |||
{{Mapping|legend=1| 7 0 -6 53 | 0 1 2 -3 }} | |||
: Mapping generators: ~10/9, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~10/9 = 1\7, ~3/2 = 705.613 | |||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
[[Badness]]: 0.206592 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 6655/6561 | |||
Mapping: {{mapping| 7 0 -6 53 2 | 0 1 2 -3 2 }} | |||
Badness: 0. | Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.518 | ||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
Badness: 0.070437 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 169/168, 352/351, 385/384 | |||
Mapping: {{mapping| 7 0 -6 53 2 37 | 0 1 2 -3 2 -1 }} | |||
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.344 | |||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
Badness: 0. | Badness: 0.041238 | ||
[[Category: | [[Category:Temperament collections]] | ||
[[Category: | [[Category:Pages with mostly numerical content]] | ||
[[Category:Keemic]] | [[Category:Keemic temperaments| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |