37edo: Difference between revisions
m One more. |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(112 intermediate revisions by 30 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | |||
| de = 37-EDO | |||
| en = 37edo | |||
| es = | |||
| ja = | |||
}} | |||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | == Theory == | ||
37edo has very accurate approximations of harmonics [[5/1|5]], [[7/1|7]], [[11/1|11]] and [[13/1|13]], making it a good choice for a [[no-threes subgroup temperaments|no-threes]] approach. Harmonic 11 is particularly accurate, being only 0.03 cents sharp. | |||
37edo is | Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[porcupine]] temperament. It is the [[optimal patent val]] for [[Porcupine family #Porcupinefish|porcupinefish]], which is about as accurate as 13-limit porcupine extensions will be. Using its alternative flat fifth, it tempers out [[16875/16384]], making it a [[negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[gorgo]]/[[laconic]]). | ||
37edo is also a very accurate equal tuning for [[undecimation]] temperament, which has a [[generator]] of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a [[7L 2s]] enneatonic [[mos]], which in 37edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16-note mos. | |||
37edo | |||
In the no-3 [[13-odd-limit]], 37edo maintains the smallest relative error of any edo until [[851edo]], and the smallest absolute error until [[103edo]]{{clarify}}. <!-- what is the metric being used? --> | |||
=== Odd harmonics === | |||
{{Harmonics in equal|37}} | |||
=== Subsets and supersets === | |||
37edo is the 12th [[prime edo]], following [[31edo]] and coming before [[41edo]]. | |||
[[74edo]], which doubles it, provides an alternative approximation to harmonic 3 that supports [[meantone]]. [[111edo]], which triples it, gives a very accurate approximation of harmonic 3, and manifests itself as a great higher-limit system. [[296edo]], which slices its step in eight, is a good 13-limit system. | |||
[6\ | === Subgroups === | ||
37edo offers close approximations to [[Harmonic series|harmonics]] 5, 7, 11, and 13, and a usable approximation of 9 as well. | |||
* 12\37 = 389.2 cents | |||
* 30\37 = 973.0 cents | |||
* 17\37 = 551.4 cents | |||
* 26\37 = 843.2 cents | |||
* [6\37 = 194.6 cents] | |||
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as | This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as [[111edo]]. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111edo, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as [[74edo]]. | ||
=== | === Dual fifths === | ||
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: | The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: | ||
Line 42: | Line 54: | ||
"major third" = 14\37 = 454.1 cents | "major third" = 14\37 = 454.1 cents | ||
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[ | If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Oceanfront]] temperament. | ||
37edo can only barely be considered as "dual-fifth", because the sharp fifth is 12 cents sharp of 3/2, has a regular diatonic scale, and can be interpreted as somewhat accurate regular temperaments like [[archy]] and the aforementioned oceanfront. In contrast, the flat fifth is 21 cents flat and the only low-limit interpretation is as the very inaccurate [[mavila]]. | |||
Since both fifths do not support [[meantone]], the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo. | |||
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). | 37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). | ||
=== No-3 approach === | |||
If prime 3 is ignored, 37edo represents the no-3 23-odd-limit consistently, and is distinctly consistent within the no-3 16-integer-limit. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2" | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
Line 62: | Line 78: | ||
| 0.00 | | 0.00 | ||
| 1/1 | | 1/1 | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 1 | | 1 | ||
| 32.43 | | 32.43 | ||
| | | [[55/54]], [[56/55]] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 2 | | 2 | ||
| 64.86 | | 64.86 | ||
| 28/27 | | [[27/26]], [[28/27]] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 3 | | 3 | ||
| 97.30 | | 97.30 | ||
| | | [[128/121]], [[55/52]] | ||
| [[16/15]] | |||
| | |||
| | | | ||
|- | |- | ||
| 4 | | 4 | ||
| 129.73 | | 129.73 | ||
| 14/13 | | [[14/13]] | ||
| 13/12 | | [[13/12]], [[15/14]] | ||
| 12/11 | | [[12/11]] | ||
| | | | ||
|- | |- | ||
| 5 | | 5 | ||
| 162.16 | | 162.16 | ||
| 11/10 | | [[11/10]] | ||
| 10/9, 12/11 | | [[10/9]], [[12/11]] | ||
| 13/12 | | [[13/12]] | ||
| | | | ||
|- | |- | ||
| 6 | | 6 | ||
| 194.59 | | 194.59 | ||
| | | [[28/25]] | ||
| | | | ||
| | | | ||
| 9/8, 10/9 | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 7 | | 7 | ||
| 227.03 | | 227.03 | ||
| 8/7 | | [[8/7]] | ||
| 9/8 | | [[9/8]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 8 | | 8 | ||
| 259.46 | | 259.46 | ||
| | | | ||
| 7/6 | | [[7/6]], [[15/13]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 9 | | 9 | ||
| 291.89 | | 291.89 | ||
| 13/11, 32/27 | | [[13/11]], [[32/27]] | ||
| | | | ||
| 6/5, 7/6 | | [[6/5]], [[7/6]] | ||
| | | | ||
|- | |- | ||
| 10 | | 10 | ||
| 324.32 | | 324.32 | ||
| | | | ||
| 6/5, 11/9 | | [[6/5]], [[11/9]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 11 | | 11 | ||
| 356.76 | | 356.76 | ||
| 16/13, 27/22 | | [[16/13]], [[27/22]] | ||
| | | | ||
| | | | ||
| 11/9 | | [[11/9]] | ||
|- | |- | ||
| 12 | | 12 | ||
| 389.19 | | 389.19 | ||
| 5/4 | | [[5/4]] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 13 | | 13 | ||
| 421.62 | | 421.62 | ||
| 14/11 | | [[14/11]], [[32/25]] | ||
| | | | ||
| | | | ||
| 9/7 | | [[9/7]] | ||
|- | |- | ||
| 14 | | 14 | ||
| 454.05 | | 454.05 | ||
| 13/10 | | [[13/10]] | ||
| 9/7 | | [[9/7]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 15 | | 15 | ||
| 486.49 | | 486.49 | ||
| | | | ||
| 4/3 | | [[4/3]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 16 | | 16 | ||
| 518.92 | | 518.92 | ||
| 27/20 | | [[27/20]] | ||
| | | | ||
| 4/3 | | [[4/3]] | ||
| | | | ||
|- | |- | ||
| 17 | | 17 | ||
| 551.35 | | 551.35 | ||
| 11/8 | | [[11/8]] | ||
| [[15/11]] | |||
| | | | ||
| | | [[18/13]] | ||
|- | |- | ||
| 18 | | 18 | ||
| 583.78 | | 583.78 | ||
| 7/5 | | [[7/5]] | ||
| 18/13 | | [[18/13]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 19 | | 19 | ||
| 616.22 | | 616.22 | ||
| 10/7 | | [[10/7]] | ||
| 13/9 | | [[13/9]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 20 | | 20 | ||
| 648.65 | | 648.65 | ||
| 16/11 | | [[16/11]] | ||
| | | [[22/15]] | ||
| | | | ||
| 13/9 | | [[13/9]] | ||
|- | |- | ||
| 21 | | 21 | ||
| 681.08 | | 681.08 | ||
| 40/27 | | [[40/27]] | ||
| | | | ||
| 3/2 | | [[3/2]] | ||
| | | | ||
|- | |- | ||
| 22 | | 22 | ||
| 713.51 | | 713.51 | ||
| | | | ||
| 3/2 | | [[3/2]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 23 | | 23 | ||
| 745.95 | | 745.95 | ||
| 20/13 | | [[20/13]] | ||
| 14/9 | | [[14/9]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 24 | | 24 | ||
| 778.38 | | 778.38 | ||
| 11/7 | | [[11/7]], [[25/16]] | ||
| | | | ||
| | | | ||
| 14/9 | | [[14/9]] | ||
|- | |- | ||
| 25 | | 25 | ||
| 810.81 | | 810.81 | ||
| 8/5 | | [[8/5]] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 26 | | 26 | ||
| 843.24 | | 843.24 | ||
| 13/8, 44/27 | | [[13/8]], [[44/27]] | ||
| | | | ||
| | | | ||
| 18/11 | | [[18/11]] | ||
|- | |- | ||
| 27 | | 27 | ||
| 875.68 | | 875.68 | ||
| | | | ||
| 5/3, 18/11 | | [[5/3]], [[18/11]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 28 | | 28 | ||
| 908.11 | | 908.11 | ||
| 22/13, 27/16 | | [[22/13]], [[27/16]] | ||
| | | | ||
| 5/3, 12/7 | | [[5/3]], [[12/7]] | ||
| | | | ||
|- | |- | ||
| 29 | | 29 | ||
| 940.54 | | 940.54 | ||
| | | | ||
| 12/7 | | [[12/7]], [[26/15]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 30 | | 30 | ||
| 972.97 | | 972.97 | ||
| 7/4 | | [[7/4]] | ||
| 16/9 | | [[16/9]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 31 | | 31 | ||
| 1005.41 | | 1005.41 | ||
| | | [[25/14]] | ||
| | | | ||
| | | | ||
| 16/9, 9/5 | | [[16/9]], [[9/5]] | ||
|- | |- | ||
| 32 | | 32 | ||
| 1037.84 | | 1037.84 | ||
| 11 | | [[20/11]] | ||
| 9/5, 11/6 | | [[9/5]], [[11/6]] | ||
| | | | ||
| | |||
|- | |- | ||
| 33 | | 33 | ||
| 1070.27 | | 1070.27 | ||
| 13/7 | | [[13/7]] | ||
| 24/13 | | [[24/13]], [[28/15]] | ||
| 11/6 | | [[11/6]] | ||
| | | | ||
|- | |- | ||
| 34 | | 34 | ||
| 1102.70 | | 1102.70 | ||
| | | [[121/64]], [[104/55]] | ||
| | | [[15/8]] | ||
| | | | ||
| | | | ||
|- | |- | ||
| 35 | | 35 | ||
| 1135.14 | | 1135.14 | ||
| 27/14, 52/27 | | [[27/14]], [[52/27]] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 36 | | 36 | ||
| 1167.57 | | 1167.57 | ||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
| 37 | | 37 | ||
| 1200.00 | | 1200.00 | ||
| 2/1 | | [[2/1]] | ||
| | | | ||
| | | | ||
Line 326: | Line 342: | ||
|} | |} | ||
== | == Notation == | ||
=== Ups and downs notation === | |||
37edo can be notated using [[ups and downs notation]]: | |||
{| class="wikitable center-all right-2 left-3" | |||
{| class="wikitable center-all" | |- | ||
! colspan=" | ! Degrees | ||
! Cents | |||
! colspan="3" | [[Ups and downs notation]] | |||
|- | |||
| 0 | |||
| 0.00 | |||
| Perfect 1sn | |||
| P1 | |||
| D | |||
|- | |||
| 1 | |||
| 32.43 | |||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |||
| 2 | |||
| 64.86 | |||
| Upminor 2nd | |||
| ^m2 | |||
| ^Eb | |||
|- | |||
| 3 | |||
| 97.30 | |||
| Downmid 2nd | |||
| v~2 | |||
| ^^Eb | |||
|- | |||
| 4 | |||
| 129.73 | |||
| Mid 2nd | |||
| ~2 | |||
| Ed | |||
|- | |||
| 5 | |||
| 162.16 | |||
| Upmid 2nd | |||
| ^~2 | |||
| vvE | |||
|- | |||
| 6 | |||
| 194.59 | |||
| Downmajor 2nd | |||
| vM2 | |||
| vE | |||
|- | |||
| 7 | |||
| 227.03 | |||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |||
| 8 | |||
| 259.46 | |||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |||
| 9 | |||
| 291.89 | |||
| Upminor 3rd | |||
| ^m3 | |||
| ^F | |||
|- | |||
| 10 | |||
| 324.32 | |||
| Downmid 3rd | |||
| v~3 | |||
| ^^F | |||
|- | |||
| 11 | |||
| 356.76 | |||
| Mid 3rd | |||
| ~3 | |||
| Ft | |||
|- | |||
| 12 | |||
| 389.19 | |||
| Upmid 3rd | |||
| ^~3 | |||
| vvF# | |||
|- | |||
| 13 | |||
| 421.62 | |||
| Downmajor 3rd | |||
| vM3 | |||
| vF# | |||
|- | |||
| 14 | |||
| 454.05 | |||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |||
| 15 | |||
| 486.49 | |||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |||
| 16 | |||
| 518.92 | |||
| Up 4th, Dim 5th | |||
| ^4, d5 | |||
| ^G, Ab | |||
|- | |||
| 17 | |||
| 551.35 | |||
| Downmid 4th, Updim 5th | |||
| v~4, ^d5 | |||
| ^^G, ^Ab | |||
|- | |||
| 18 | |||
| 583.78 | |||
| Mid 4th, Downmid 5th | |||
| ~4, v~5 | |||
| Gt, ^^Ab | |||
|- | |||
| 19 | |||
| 616.22 | |||
| Mid 5th, Upmid 4th | |||
| ~5, ^~4 | |||
| Ad, vvG# | |||
|- | |||
| 20 | |||
| 648.65 | |||
| Upmid 5th, Downaug 5th | |||
| ^~5, vA4 | |||
| vvA, vG# | |||
|- | |||
| 21 | |||
| 681.08 | |||
| Down 5th, Aug 4th | |||
| v5, A4 | |||
| vA, G# | |||
|- | |||
| 22 | |||
| 713.51 | |||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |- | ||
| 23 | |||
| 745.95 | |||
| Minor 6th | |||
| m6 | |||
| | | Bb | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 24 | |||
| | | 778.38 | ||
| | | Upminor 6th | ||
| | | ^m6 | ||
| | | ^Bb | ||
| | |- | ||
| | | 25 | ||
| - | | 810.81 | ||
| - | | Downmid 6th | ||
| -37. | | v~6 | ||
| ^^Bb | |||
|- | |||
| 26 | |||
| 843.24 | |||
| Mid 6th | |||
| ~6 | |||
| Bd | |||
|- | |||
| 27 | |||
| 875.68 | |||
| Upmid 6th | |||
| ^~6 | |||
| vvB | |||
|- | |||
| 28 | |||
| 908.11 | |||
| Downmajor 6th | |||
| vM6 | |||
| vB | |||
|- | |||
| 29 | |||
| 940.54 | |||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |||
| 30 | |||
| 972.97 | |||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |||
| 31 | |||
| 1005.41 | |||
| Upminor 7th | |||
| ^m7 | |||
| ^C | |||
|- | |||
| 32 | |||
| 1037.84 | |||
| Downmid 7th | |||
| v~7 | |||
| ^^C | |||
|- | |||
| 33 | |||
| 1070.27 | |||
| Mid 7th | |||
| ~7 | |||
| Ct | |||
|- | |||
| 34 | |||
| 1102.70 | |||
| Upmid 7th | |||
| ^~7 | |||
| vvC# | |||
|- | |||
| 35 | |||
| 1135.14 | |||
| Downmajor 7th | |||
| vM7 | |||
| vC# | |||
|- | |||
| 36 | |||
| 1167.57 | |||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |||
| 37 | |||
| 1200.00 | |||
| Perfect 8ve | |||
| P8 | |||
| D | |||
|} | |} | ||
=== | 37edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | ||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Ivan Wyschnegradsky's notation === | |||
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used: | |||
{{Sharpness-sharp6-iw}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[23edo#Second-best fifth notation|23b]], [[30edo#Sagittal notation|30]], and [[44edo#Sagittal notation|44]]. | |||
==== Evo and Revo flavors ==== | |||
<imagemap> | |||
File:37-EDO_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 599 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Sagittal.svg]] | |||
</imagemap> | |||
==== Alternative Evo flavor ==== | |||
<imagemap> | |||
File:37-EDO_Alternative_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 639 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Alternative_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:37-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 623 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |- | ||
! | ! rowspan="2" | [[Subgroup]] | ||
| | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | |||
| | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning error | |||
| | |||
| | |||
|- | |- | ||
! | ! [[TE error|Absolute]] (¢) | ||
! [[TE | ! [[TE simple badness|Relative]] (%) | ||
| | |- | ||
| | | 2.5 | ||
| 2. | | {{monzo| 86 -37 }} | ||
| 2. | | {{mapping| 37 86 }} | ||
| 2. | | −0.619 | ||
| 0.619 | |||
| 1.91 | |||
|- | |||
| 2.5.7 | |||
| 3136/3125, 4194304/4117715 | |||
| {{mapping| 37 86 104 }} | |||
| −0.905 | |||
| 0.647 | |||
| 2.00 | |||
|- | |||
| 2.5.7.11 | |||
| 176/175, 1375/1372, 65536/65219 | |||
| {{mapping| 37 86 104 128 }} | |||
| −0.681 | |||
| 0.681 | | 0.681 | ||
| 2.10 | |||
|- | |||
| 2.5.7.11.13 | |||
| 176/175, 640/637, 847/845, 1375/1372 | |||
| {{mapping| 37 86 104 128 137 }} | |||
| −0.692 | |||
| 0.610 | | 0.610 | ||
| 1.88 | | 1.88 | ||
|} | |} | ||
* 37et is most prominent in the no-3 11-, 13-, 17-, 19- and 23-limit subgroups. The next equal temperaments doing better in these subgroups are 109, 581, 103, 124 and 93, respectively. | |||
=== Rank-2 temperaments === | |||
== | |||
* [[List of 37et rank two temperaments by badness]] | * [[List of 37et rank two temperaments by badness]] | ||
{| class="wikitable" | {| class="wikitable center-1" | ||
|- | |- | ||
! Generator | ! Generator | ||
! | ! In patent val | ||
! | ! In 37b val | ||
|- | |- | ||
| 1\37 | | 1\37 | ||
Line 445: | Line 687: | ||
|- | |- | ||
| 2\37 | | 2\37 | ||
| [[ | | [[Sycamore]] | ||
| | | | ||
|- | |- | ||
Line 457: | Line 699: | ||
|- | |- | ||
| 5\37 | | 5\37 | ||
| [[Porcupine]]/[[ | | [[Porcupine]] / [[porcupinefish]] | ||
| | | | ||
|- | |- | ||
| 6\37 | | 6\37 | ||
| colspan="2" | [[ | | colspan="2" | [[Didacus]] / [[roulette]] | ||
|- | |- | ||
| 7\37 | | 7\37 | ||
| [[ | | [[Shoe]] / [[semaja]] | ||
| [[ | | [[Shoe]] / [[laconic]] / [[gorgo]] | ||
|- | |- | ||
| 8\37 | | 8\37 | ||
| | | | ||
| [[ | | [[Semaphore]] (37bd) | ||
|- | |- | ||
| 9\37 | | 9\37 | ||
| | | | ||
| [[ | | [[Gariberttet]] | ||
|- | |- | ||
| 10\37 | | 10\37 | ||
Line 488: | Line 730: | ||
|- | |- | ||
| 13\37 | | 13\37 | ||
| [[ | | [[Skwares]] (37dd) | ||
| | | | ||
|- | |- | ||
Line 496: | Line 738: | ||
|- | |- | ||
| 15\37 | | 15\37 | ||
| [[ | | [[Ultrapyth]], [[oceanfront]] | ||
| | | | ||
|- | |- | ||
| 16\37 | | 16\37 | ||
| [[Undecimation]] | |||
| | | | ||
|- | |- | ||
| 17\37 | | 17\37 | ||
| [[ | | [[Freivald]], [[emka]], [[onzonic]] | ||
| | | | ||
|- | |- | ||
Line 511: | Line 753: | ||
| | | | ||
|} | |} | ||
== Scales == | |||
* [[MOS Scales of 37edo]] | |||
* [[Chromatic pairs#Roulette|Roulette scales]] | |||
* [[37ED4]] | |||
* [[Square root of 13 over 10]] | |||
=== Every 8 steps of 37edo === | |||
{| class="wikitable center-1 right-2" | |||
|+ | |||
!Degrees | |||
!Cents | |||
!Approximate Ratios<br>of 6.7.11.20.27 subgroup | |||
!Additional Ratios | |||
|- | |||
|0 | |||
|0.000 | |||
|[[1/1]] | |||
| | |||
|- | |||
|1 | |||
|259.46 | |||
|[[7/6]] | |||
| | |||
|- | |||
|2 | |||
|518.92 | |||
|[[27/20]] | |||
| | |||
|- | |||
|3 | |||
|778.38 | |||
|[[11/7]] | |||
| | |||
|- | |||
|4 | |||
|1037.84 | |||
|[[20/11]], [[11/6]] | |||
| | |||
|- | |||
|5 | |||
|1297.30 | |||
| | |||
|[[19/9]] | |||
|- | |||
|6 | |||
|1556.76 | |||
|[[27/11]] | |||
| | |||
|- | |||
|7 | |||
|1816.22 | |||
|[[20/7]] | |||
| | |||
|- | |||
|8 | |||
|2075.68 | |||
|[[10/3]] | |||
| | |||
|- | |||
|9 | |||
|2335.14 | |||
|[[27/7]] | |||
| | |||
|- | |||
|10 | |||
|2594.59 | |||
|[[9/2]] | |||
| | |||
|- | |||
|11 | |||
|2854.05 | |||
| | |||
|[[26/5]] | |||
|- | |||
|12 | |||
|3113.51 | |||
|[[6/1]] | |||
| | |||
|- | |||
|13 | |||
|3372.97 | |||
|[[7/1]] | |||
| | |||
|- | |||
|14 | |||
|3632.43 | |||
| | |||
| | |||
|- | |||
|15 | |||
|3891.89 | |||
| | |||
|[[19/2]] | |||
|- | |||
|16 | |||
|4151.35 | |||
|[[11/1]] | |||
| | |||
|- | |||
|17 | |||
|4410.81 | |||
| | |||
| | |||
|- | |||
|18 | |||
|4670.27 | |||
| | |||
| | |||
|- | |||
|19 | |||
|4929.73 | |||
| | |||
| | |||
|- | |||
|20 | |||
|5189.19 | |||
|[[20/1]] | |||
| | |||
|- | |||
|21 | |||
|5448.65 | |||
| | |||
| | |||
|- | |||
|22 | |||
|5708.11 | |||
|[[27/1]] | |||
| | |||
|} | |||
== Instruments == | |||
; Lumatone | |||
* [[Lumatone mapping for 37edo]] | |||
; Fretted instruments | |||
* [[Skip fretting system 37 2 7]] | |||
== Music == | == Music == | ||
* [ | ; [[Beheld]] | ||
* [ | * [https://www.youtube.com/watch?v=IULi2zSdatA ''Mindless vibe''] (2023) | ||
* [http:// | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/e7dLJTsS3PQ ''37edo''] (2025) | |||
* [https://www.youtube.com/shorts/m9hmiH8zong ''37edo jam''] (2025) | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=jpPjVouoq3E ''5 days in''] (2023) | |||
* [https://www.youtube.com/watch?v=ngxSiuVadls ''A Dark Era Arises''] (2023) – in Porcupine[15], 37edo tuning | |||
* [https://www.youtube.com/watch?v=U93XFJJ1aXw ''Two Faced People''] (2025) – in Twothirdtonic[10], 37edo tuning | |||
; [[Andrew Heathwaite]] | |||
* [https://andrewheathwaite.bandcamp.com/track/shorn-brown "Shorn Brown"] from ''Newbeams'' (2012) | |||
* [https://andrewheathwaite.bandcamp.com/track/jellybear "Jellybear"] from ''Newbeams'' (2012) | |||
; [[Aaron Krister Johnson]] | |||
* [http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3 ''Toccata Bianca 37EDO'']{{dead link}} | |||
; [[JUMBLE]] | |||
* [https://www.youtube.com/watch?v=taT1DClJ2KM ''Tyrian and Gold''] (2024) | |||
; [[User:Fitzgerald Lee|Fitzgerald Lee]] | |||
* [https://www.youtube.com/watch?v=Nr0cUJcL4SU ''Bittersweet End''] (2025) | |||
; [[Mandrake]] | |||
* [https://www.youtube.com/watch?v=iL_4nRZBJDc ''What if?''] (2023) | |||
; [[Claudi Meneghin]] | |||
* [https://www.youtube.com/watch?v=7dU8eyGbt9I ''Deck The Halls''] (2022) | |||
* [https://www.youtube.com/watch?v=HTAobydvC20 Marcello - Bach: Adagio from BWV 974, arranged for Oboe & Organ, tuned into 37edo] (2022) | |||
* [https://www.youtube.com/watch?v=hpjZZXFM_Fk ''Little Fugue on Happy Birthday''] (2022) – in Passion, 37edo tuning | |||
* [https://www.youtube.com/watch?v=SgHY3snZ5bs ''Fugue on an Original Theme''] (2022) | |||
* [https://www.youtube.com/watch?v=AJ2sa-fRqbE Paradies, Toccata, Arranged for Organ and Tuned into 37edo] (2023) | |||
; [[Micronaive]] | |||
* [https://youtu.be/TMVRYLvg_cA No.27.50] (2022) | |||
; [[Herman Miller]] | |||
* ''[https://soundcloud.com/morphosyntax-1/luck-of-the-draw Luck of the Draw]'' (2023) | |||
; [[Joseph Monzo]] | |||
* [https://youtube.com/watch?v=QERRKsbbWUQ ''The Kog Sisters''] (2014) | |||
* [https://www.youtube.com/watch?v=BfP8Ig94kE0 ''Afrikan Song''] (2016) | |||
; [[Mundoworld]] | |||
* ''Reckless Discredit'' (2021) [https://www.youtube.com/watch?v=ovgsjSoHOkg YouTube] · [https://mundoworld.bandcamp.com/track/reckless-discredit Bandcamp] | |||
; [[Ray Perlner]] | |||
* [https://www.youtube.com/watch?v=8reCr2nDGbw ''Porcupine Lullaby''] (2020) – in Porcupine, 37edo tuning | |||
* [https://www.youtube.com/watch?v=j8C9ECvfyQM ''Fugue for Brass in 37EDO sssLsss "Dingoian"''] (2022) – in Porcupine[7], 37edo tuning | |||
* [https://www.youtube.com/watch?v=_xfvNKUu8gY ''Fugue for Klezmer Band in 37EDO Porcupine<nowiki>[</nowiki>7<nowiki>]</nowiki> sssssLs "Lemurian"''] (2023) – in Porcupine[7], 37edo tuning | |||
; [[Phanomium]] | |||
* [https://www.youtube.com/watch?v=2otxZqUrvHc ''Elevated Floors''] (2025) | |||
* [https://www.youtube.com/watch?v=BbexOU-9700 ''cat jam 37''] (2025) | |||
; [[Togenom]] | |||
* "Canals of Mars" from ''Xenharmonics, Vol. 5'' (2024) – [https://open.spotify.com/track/7v2dpCjiRKUfVVBZw8aWSf Spotify] |[https://togenom.bandcamp.com/track/canals-of-mars Bandcamp] | [https://www.youtube.com/watch?v=qPcEl_bifC0 YouTube] | |||
; [[Uncreative Name]] | |||
* [https://www.youtube.com/watch?v=rE9L56yZ1Kw ''Winter''] (2025) | |||
; <nowiki>XENO*n*</nowiki> | |||
* ''[https://www.youtube.com/watch?v=_m5u4VviMXw Galantean Drift]'' (2025) | |||
== See also == | |||
* [[User:Unque/37edo Composition Theory|Unque's approach]] | |||
== External links == | |||
* [http://tonalsoft.com/enc/number/37-edo/37edo.aspx 37-edo / 37-et / 37-tone equal-temperament] on [[Tonalsoft Encyclopedia]] | |||
[[Category:Listen]] | |||
[[Category: |