Canou family: Difference between revisions
No edit summary |
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
||
(37 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
''' | {{Technical data page}} | ||
The '''canou family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperament]]s [[tempering out|tempers out]] the [[canousma]], 4802000/4782969 ({{monzo| 4 -14 3 4 }}), a 7-limit comma measuring about 6.9 [[cent]]s. | |||
== Canou == | |||
{{Main| Canou temperament }} | |||
The canou temperament features a [[period]] of an [[octave]] and [[generator]]s of [[3/2]] and [[81/70]]. The ~81/70-generator is about 255 cents. Three make [[14/9]]; four make [[9/5]]. It therefore splits the large septimal diesis, [[49/48]], into three equal parts, making two distinct [[interseptimal interval]]s related to the 35th harmonic. | |||
A basic tuning option would be [[99edo]], although [[80edo]] is even simpler and distinctive. More intricate tunings are provided by [[311edo]] and [[410edo]], whereas the [[optimal patent val]] goes up to [[1131edo]], relating it to the [[amicable]] temperament. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: [[4802000/4782969]] | |||
{{Mapping|legend=1| 1 0 0 -1 | 0 1 2 2 | 0 0 -4 3 }} | |||
: mapping generators: ~2, ~3, ~81/70 | |||
Lattice basis: | |||
: 3/2 length = 0.8110, 81/70 length = 0.5135 | |||
: Angle (3/2, 81/70) = 73.88 deg | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.3175, ~81/70 = 254.6220 | |||
: [[error map]]: {{val| 0.0000 +0.3625 -0.1667 -0.3249 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.3455, ~81/70 = 254.6237 | |||
: error map: {{val| 0.0000 +0.3904 -0.1175 -0.2640 }} | |||
[[Minimax tuning]]: | |||
* [[7-odd-limit]]: 3 +c/14, 5 and 7 just | |||
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7 | |||
* [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | |||
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5 | |||
Badness: 0. | {{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | ||
[[Badness]] (Smith): 1.122 × 10<sup>-3</sup> | |||
[[Complexity spectrum]]: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5 | |||
== Undecimal canou == | |||
The fifth is in the range where a stack of four (i.e. a major third) can serve as ~[[19/15]] and a stack of five (i.e. a major seventh) can serve as ~[[19/10]], tempering out [[1216/1215]]. Moreover, the last generator of ~81/70 is sharpened to slightly overshoot [[22/19]], so it only makes sense to temper out their difference, [[1540/1539]]. The implied 11-limit comma is the [[symbiotic comma]], which suggests the [[wilschisma]] should also be tempered out in the 13-limit. | |||
Since the syntonic comma has been split in two, it is natural to map [[19/17]] to the mean of [[9/8]] and [[10/9]], tempering out [[1445/1444]]. From a commatic point of view, notice the other 11-limit comma, [[42875/42768]], is {{nowrap| S34 × S35<sup>2</sup> }}, suggesting tempering out [[595/594]] (S34 × S35), [[1156/1155]] (S34), and [[1225/1224]] (S35), which coincides with above. Finally, we can map [[23/20]] to the fourth complement of 22/19 to make an equidistant sequence consisting of 7/6, 22/19, 23/20, and 8/7, tempering out [[760/759]]. 311edo remains an excellent tuning in all the limits. | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 19712/19683, 42875/42768 | |||
{{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.2115, ~81/70 = 254.6215 | |||
: [[error map]]: {{val| 0.0000 +0.2565 -0.3768 -0.5383 +0.2980 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 702.1829, ~81/70 = 254.6186 | |||
: error map: {{val| 0.0000 +0.2279 -0.4221 -0.6043 +0.1069 }} | |||
{{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | |||
[[Badness]] (Smith): 2.04 × 10<sup>-3</sup> | |||
[[Complexity spectrum]]: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2080/2079, 19712/19683, 42875/42768 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2075, ~81/70 = 254.6183 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.1889, ~81/70 = 254.6222 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | |||
Badness (Smith): 2.56 × 10<sup>-3</sup> | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 595/594, 833/832, 1156/1155, 19712/19683 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2296, ~51/44 = 254.6012 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2055, ~51/44 = 254.6066 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | |||
Badness (Smith): 1.49 × 10<sup>-3</sup> | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2355, ~22/19 = 254.5930 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2117, ~22/19 = 254.5983 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | |||
Badness (Smith): 1.00 × 10<sup>-3</sup> | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1156/1155 | |||
Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 -6 4 | 0 1 2 2 7 10 6 7 1 | 0 0 -4 3 -3 4 -2 -4 -5 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 702.2361, ~22/19 = 254.6222 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 702.2359, ~22/19 = 254.6223 | |||
{{Optimal ET sequence|legend=0| 94, 193f, 212gh, 217, 311 }} | |||
Badness (Smith): 0.948 × 10<sup>-3</sup> | |||
== Canta == | |||
By adding [[896/891]], the pentacircle comma, [[33/32]] is equated with 28/27, so the scale is filled with this 33/32~28/27 mixture. This may be described as 75e & 80 & 99e, and 80edo makes the optimal. It has a natural extension to the 13-limit since 896/891 = (352/351)(364/363), named ''gentcanta'' in earlier materials. | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 896/891, 472392/471625 | |||
{{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1200.0000, ~3/2 = 702.8093, ~64/55 = 254.3378 | |||
: [[error map]]: {{val| 0.0000 +0.8543 +1.9537 -0.1940 +6.0769 }} | |||
* [[CWE]]: ~2 = 1200.0000, ~3/2 = 703.5249, ~64/55 = 254.5492 | |||
: error map: {{val| 0.0000 +1.5699 +2.5393 +1.8714 +5.2799 }} | |||
{{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e, 457bcddeeee }} | |||
[[Badness]] (Smith): 4.52 × 10<sup>-3</sup> | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 364/363, 472392/471625 | |||
Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~3/2 = 703.6228, ~64/55 = 254.3447 | |||
* CWE: ~2 = 1200.0000, ~3/2 = 703.8323, ~64/55 = 254.5887 | |||
{{Optimal ET sequence|legend=0| 75e, 80, 99ef, 179ef }} | |||
Badness (Smith): 4.78 × 10<sup>-3</sup> | |||
== Semicanou == | == Semicanou == | ||
Semicanou adds [[9801/9800]], the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that {{nowrap| 99/70 {{=}} (81/70)(11/9) }}, this extension is more than natural. | |||
The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by about one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9, 11/9, 11/9, and 11/10. | |||
[[Subgroup]]: 2.3.5.7.11 | |||
[[Comma list]]: 9801/9800, 14641/14580 | |||
{{Mapping|legend=1| 2 0 0 -2 1 | 0 1 2 2 2 | 0 0 -4 3 -1 }} | |||
: mapping generators: ~99/70, ~3, ~81/70 | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~99/70 = 600.0000, ~3/2 = 702.4262, ~81/70 = 254.6191 | |||
: [[error map]]: {{val| 0.0000 +0.4712 +0.0625 -0.1163 -1.0846 }} | |||
* [[CWE]]: ~99/70 = 600.0000, ~3/2 = 702.4048, ~81/70 = 254.6179 | |||
: error map: {{val| 0.0000 +0.4498 +0.0245 -0.1627 -1.1262 }} | |||
{{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | |||
Badness: | [[Badness]] (Smith): 2.20 × 10<sup>-3</sup> | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 14641/14580 | |||
Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4802, ~81/70 = 254.6526 | |||
* CWE: ~99/70 = 600.0000, ~3/2 = 702.4945, ~81/70 = 254.6511 | |||
{{Optimal ET sequence|legend=0| 80f, 94, 118f, 198, 410 }} | |||
Badness (Smith): 2.97 × 10<sup>-3</sup> | |||
<!-- debatable canonicity | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580 | |||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4415, ~81/70 = 254.6663 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 198g, 212g, 292, 410 }} | |||
Badness (Smith): 2.42 × 10<sup>-3</sup> | |||
==== 19-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444 | |||
Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.4030, ~81/70 = 254.6870 | |||
{{Optimal ET sequence|legend=0| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | |||
Badness (Smith): 2.18 × 10<sup>-3</sup> | |||
--> | |||
=== Semicanoumint === | |||
This extension was named ''semicanou'' in the earlier materials. It adds [[352/351]], the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 9801/9800, 14641/14580 | |||
Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.5374, ~81/70 = 254.6819 | |||
* CTE: ~99/70 = 600.0000, ~3/2 = 702.7916, ~81/70 = 254.6704 | |||
{{Optimal ET sequence|legend=0| 80, 94, 118, 174d, 198, 490f }} | |||
Badness (Smith): 2.70 × 10<sup>-3</sup> | |||
=== Semicanouwolf === | |||
This extension was named ''gentsemicanou'' in the earlier materials. It adds [[351/350]], the ratwolfsma, as wells as [[364/363]], the gentle comma, to the comma list. Since 351/350 = (81/70)/(15/13), the 81/70-generator simultaneously represents 15/13, adding a lot of fun to the scale. | |||
Not supported by many patent vals, 80edo easily makes the optimal. Yet 104edo in 104c val and 118edo in 118f val are worth mentioning, and the temperament may be described as 80 & 104c & 118f. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 351/350, 364/363, 11011/10935 | |||
Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | |||
Optimal tunings: | |||
* CTE: ~55/39 = 600.0000, ~3/2 = 702.7417, ~15/13 = 254.3382 | |||
* CWE: ~55/39 = 600.0000, ~3/2 = 702.8092, ~15/13 = 254.3396 | |||
{{Optimal ET sequence|legend=0| 80, 104c, 118f, 198f, 420cff }} | |||
Badness (Smith): 3.51 × 10<sup>-3</sup> | |||
[[Category:Temperament]] | [[Category:Temperament families]] | ||
[[Category: | [[Category:Pages with mostly numerical content]] | ||
[[Category:Canou]] | [[Category:Canou family| ]] <!-- main article --> | ||
[[Category:Canou| ]] <!-- key article --> | |||
[[Category:Rank 3]] |