243edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
→Theory: + octave stretch, a brief discussion |
||
(17 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
243edo is a strong higher-limit system, especially if we skip [[prime harmonic|prime]] [[11/1|11]]. It is [[consistent]] to the no-11 [[29-odd-limit]] tending flat, with the [[3/1|3]], [[5/1|5]], [[7/1|7]], [[13/1|13]], [[17/1|17]], [[19/1|19]], [[23/1|23]], and [[29/1|29]] all tuned flat. | |||
As an equal temperament, it [[tempering out|tempers out]] the [[semicomma]] (2109375/2097152, the 5-limit orwell comma) and the [[ennealimma]] in the 5-limit, and [[2401/2400]] and [[4375/4374]] in the 7-limit. It [[support]]s [[ennealimmal]], [[quadrawell]], and [[sabric]]. | |||
Using the [[patent val]], it tempers out [[243/242]], [[441/440]], and [[540/539]] in the 11-limit, and provides the [[optimal patent val]] for the [[Ragismic microtemperaments #Ennealimmal|ennealimnic]] temperament. In the 13-limit it tempers out [[364/363]], [[625/624]], [[729/728]], and [[2080/2079]], and provides the optimal temperament for 13-limit ennealimnic and the rank-3 [[Breed family #Jovial|jovial]] temperament, and in the 17-limit it tempers out [[375/374]] and [[595/594]] and provides the optimal patent val for 17-limit ennealimnic. | |||
Using the alternative val 243e {{val| 241 385 564 682 '''840''' }}, with an lower error, it tempers out [[385/384]], [[1375/1372]], [[8019/8000]], and [[14641/14580]], and in the 13-limit, 625/624, 729/728, [[847/845]], [[1001/1000]], and [[1716/1715]]. It provides a good tuning for [[fibo]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|243}} | |||
=== Octave stretch === | |||
243edo can benefit from slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[385edt]] or [[628ed6]]. This improves most of the approximated harmonics, including the 11 if we use the 243e val. | |||
=== Subsets and supersets === | |||
Since 243 factors into primes as 3<sup>5</sup>, 243edo has subset edos {{EDOs| 3, 9, 27, and 81 }}. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{Monzo| -385 243 }} | |||
| {{Mapping| 243 385 }} | |||
| +0.227 | |||
| 0.227 | |||
| 4.60 | |||
|- | |||
| 2.3.5 | |||
| 2109375/2097152, {{monzo| 1 -27 18 }} | |||
| {{Mapping| 243 385 564 }} | |||
| +0.314 | |||
| 0.222 | |||
| 4.50 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 4375/4374, 2109375/2097152 | |||
| {{Mapping| 243 385 564 682 }} | |||
| +0.318 | |||
| 0.192 | |||
| 3.90 | |||
|- | |||
| 2.3.5.7.13 | |||
| 625/624, 729/728, 2401/2400, 10985/10976 | |||
| {{Mapping| 243 385 564 682 899 }} | |||
| +0.309 | |||
| 0.173 | |||
| 3.50 | |||
|- | |||
| 2.3.5.7.13.17 | |||
| 625/624, 729/728, 833/832, 1225/1224, 10985/10976 | |||
| {{Mapping| 243 385 564 682 899 993 }} | |||
| +0.309 | |||
| 0.158 | |||
| 3.20 | |||
|- | |||
| 2.3.5.7.13.17.19 | |||
| 513/512, 625/624, 729/728, 833/832, 1225/1224, 1445/1444 | |||
| {{Mapping| 243 385 564 682 899 993 1032 }} | |||
| +0.306 | |||
| 0.146 | |||
| 2.96 | |||
|- | |||
| 2.3.5.7.13.17.19.23 | |||
| 513/512, 625/624, 729/728, 833/832, 875/874, 897/896, 1105/1104 | |||
| {{Mapping| 243 385 564 682 899 993 1032 1099 }} | |||
| +0.298 | |||
| 0.138 | |||
| 2.80 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11 | |||
| 385/384, 1375/1372, 4375/4374, 14641/14580 | |||
| {{Mapping| 243 385 564 682 840 }} (243e) | |||
| +0.437 | |||
| 0.295 | |||
| 5.97 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 385/384, 625/624, 729/728, 847/845, 1716/1715 | |||
| {{Mapping| 243 385 564 682 840 899 }} (243e) | |||
| +0.410 | |||
| 0.276 | |||
| 5.59 | |||
|} | |||
* 243et (243e val) has lower absolute errors than any previous equal temperaments in the 19-, 23-limit, and somewhat beyond, despite inconsistency in the corresponding odd limits. In both the 19- and 23-limit, it beats [[217edo|217]] and is only bettered by [[270edo|270et]]. | |||
* It is much stronger in the no-11 subgroups of the limits above, holding the record of lowest relative errors until being bettered in the no-11 19-limit by [[354edo|354et]] in terms of absolute error and [[935edo|935et]] in terms of relative error, and in the no-11 23-limit by [[422edo|422]] in terms of absolute error and [[2460edo|2460]] in terms of relative error. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 11\243 | |||
| 54.32 | |||
| 405/392 | |||
| [[Quinwell]] | |||
|- | |||
| 1 | |||
| 47\243 | |||
| 232.10 | |||
| 8/7 | |||
| [[Quadrawell]] | |||
|- | |||
| 1 | |||
| 55\243 | |||
| 271.60 | |||
| 75/64 | |||
| [[Sabric]] | |||
|- | |||
| 1 | |||
| 64\243 | |||
| 316.05 | |||
| 6/5 | |||
| [[Counterkleismic]] | |||
|- | |||
| 1 | |||
| 92\243 | |||
| 454.32 | |||
| 13/10 | |||
| [[Fibo]] | |||
|- | |||
| 9 | |||
| 64\243<br>(10\243) | |||
| 316.05<br>(49.38) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Ennealimmal]] | |||
[[Category:Jove]] |