414edo: Difference between revisions

Xenllium (talk | contribs)
Created page with "'''414EDO''' is the equal division of the octave into 414 parts of 2.89855 cents each. It is closely related to 207edo, but the patent vals differ on the mappi..."
Tags: Mobile edit Mobile web edit
 
ArrowHead294 (talk | contribs)
mNo edit summary
 
(17 intermediate revisions by 8 users not shown)
Line 1: Line 1:
'''414EDO''' is the [[EDO|equal division of the octave]] into 414 parts of 2.89855 [[cent]]s each. It is closely related to [[207edo]], but the patent vals differ on the mapping for 5. It is consistent to the 17-limit, tempering out 69198046875/68719476736 (submajor comma) and 7629394531250/7625597484987 (ennealimmal comma) in the 5-limit; 2401/2400, 4375/4374, and 138427734375/137438953472 in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit [[Ragismic microtemperaments|hemiennealimmal]] and the 13-limit [[Ragismic microtemperaments|quatracot]].
{{Infobox ET}}
{{ED intro}}


[[Category:Edo]]
== Theory ==
414edo is [[consistent]] to the [[17-odd-limit]] with a flat tendency for most of the [[harmonic]]s, making for a good full [[17-limit]] system. It is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for [[harmonic]] [[5/1|5]]. It [[tempering out|tempers out]] {{monzo| -36 11 8 }} (submajor comma) and {{monzo| 1 -27 18 }} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], [[1275/1274]], and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[hemiennealimmal]] and the 13-limit [[quatracot]].
 
=== Prime harmonics ===
{{Harmonics in equal|414}}
 
=== Subsets and supersets ===
Since 414 factors into 2 × 3<sup>2</sup> × 23, 414edo has subset edos {{EDOs| 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207 }}.
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }}
| {{mapping| 414 656 961 }}
| +0.2222
| 0.1575
| 5.43
|-
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }}
| {{mapping| 414 656 961 1162 }}
| +0.2299
| 0.1371
| 4.73
|-
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944
| {{mapping| 414 656 961 1162 1432 }}
| +0.2182
| 0.1248
| 4.30
|-
| 2.3.5.7.11.13
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400
| {{mapping| 414 656 961 1162 1432 1532 }}
| +0.1795
| 0.1431
| 4.94
|-
| 2.3.5.7.11.13.17
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197
| {{mapping| 414 656 961 1162 1432 1532 1692 }}
| +0.1751
| 0.1329
| 4.58
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 125\414
| 362.31
| 10125/8192
| [[Submajor]] (5-limit)
|-
| 2
| 61\414
| 176.81
| 195/176
| [[Quatracot]]
|-
| 9
| 109\414<br>(17\414)
| 315.94<br>(49.28)
| 6/5<br>(36/35)
| [[Ennealimmal]]
|-
| 18
| 86\414<br>(6\414)
| 249.28<br>(17.39)
| 231/200<br>(99/98)
| [[Hemiennealimmal]]
|-
| 18
| 164\414<br>(3\414)
| 475.36<br>(8.70)
| 1053/800<br>(1287/1280)
| [[Semihemiennealimmal]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Music ==
; [[No Clue Music]]
* [https://www.youtube.com/watch?v=j6KPW-Hr1sI ''DISconnectioN''] (2024)
 
[[Category:Listen]]