Pythagorean family: Difference between revisions

Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
This is ambiguous too
Tag: Redirect target changed
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
__FORCETOC__
#REDIRECT [[Pythagorean]]
The Pythagorean family tempers out the Pythagorean comma, 531441/524288 = |-19 12>, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo|12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
 
[[POTE_tuning|POTE generator]]: 15.116
 
Map: [<12 19 0|, <0 0 1|]
 
EDOs: [[12edo|12]], [[72edo|72]], [[84edo|84]], 156, 240, 396
 
=Compton temperament=
In terms of the normal list, compton adds 413343/409600 = |-14 10 -2 1> to the Pythagorean comma; however it can also be characterized by saying it adds 225/224. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo|72edo]], [[84edo|84edo]] or [[240edo|240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80.
 
In the either the 5 or 7-limit, [[240edo|240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.
 
In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this [[72edo|72edo]] can be recommended as a tuning.
 
Commas: 225/224, 250047/250000
 
[[POTE_tuning|POTE generator]]: ~5/4 = 383.775 (16.225)
 
Map: [<12 19 0 -22|, <0 0 1 2|]
 
EDOs: 12, [[60edo|60]], 72, 228, 300c, 372bc, 444bc
 
==11-limit==
Commas: 225/224, 441/440, 4375/4356
 
[[POTE_tuning|POTE generator]]: ~5/4 = 383.266 (16.734)
 
Map: [<12 19 0 -22 -42|, <0 0 1 2 3|]
 
EDOs: 12, 60e, 72
 
==13-limit==
Commas: 225/224, 441/440, 351/350, 364/363
 
POTE generator: ~5/4 = 383.963 (16.037)
 
Map: [<12 19 0 -22 -42 -67|, <0 0 1 2 3 4|]
 
EDOs: 72, 228f, 300cf
 
Badness: 0.0219
 
==Comptone==
Commas: 225/224, 441/440, 325/324, 1001/1000
 
POTE generator: ~5/4 = 382.612 (17.388)
 
Map: [<12 19 0 -22 -42 100|, <0 0 1 2 3 -2|]
 
EDOs: 12, 60e, 72, 204cdef, 276cdef
 
Badness: 0.0251
 
=Catler temperament=
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings, and 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7 or 7/5 are possible generators. 
 
Commas: 81/80, 128/125
 
[[POTE_tuning|POTE generator]]: 26.790
 
Map: [<12 19 28 0|, <0 0 0 1|]
 
EDOs: 12, [[36edo|36]], [[48edo|48]], 132, 180
 
==11-limit==
Commas: 81/80, 99/98, 128/125
 
POTE generator: ~36/35 = 22.723
 
Map: [<12 19 28 0 -26|, <0 0 0 1 2|]
 
EDOs: 12, 48c, 108cd
 
Badness: 0.0582
 
==Catlat==
Commas: 81/80, 128/125, 540/539
 
POTE generator: ~36/35 = 27.864
 
Map: [<12 19 28 0 109|, <0 0 0 1 -2|]
 
EDOs: 36, 48c, 84c
 
Badness: 0.0819
 
==Catcall==
Commas: 56/55, 81/80, 128/125
 
POTE generator: ~36/35 = 32.776
 
Map: [<12 19 28 0 8|, <0 0 0 1 1|]
 
EDOs: 12, 24, 36, 72ce
 
Badness: 0.0345
 
===13-limit===
Commas: 56/55, 66/65, 81/80, 105/104
 
POTE generator: ~36/35 = 37.232
 
Map: [<12 19 28 0 8 11|, <0 0 0 1 1 1|]
 
EDOs: 12f, 24, 36f, 60cf
 
Badness: 0.0284
 
==Duodecim==
Commas: 36/35, 50/49, 64/63
 
POTE generator: ~45/44 = 34.977
 
Map: [<12 19 28 34 0|, <0 0 0 0 1|]
 
EDOs: 12, 24d
 
=Omicronbeta temperament=
Commas: 225/224, 243/242, 441/440, 4375/4356
 
Generator: ~13/8 = 837.814
 
Map: [<72 114 167 202 249 266|, <0 0 0 0 0 1|]
 
EDOs: 72, 144, 216c, 288cdf, 504bcdef
 
Badness: 0.0300
 
=Hours=
Commas: 19683/19600, 33075/32768
 
POTE generator: ~225/224 = 2.100
 
Map: [<24 38 0 123 83|, <0 0 1 -1 0|]
 
Wedgie: <0 24 -24 38 -38 -123|
 
EDOs: 24, 48, 72, 312bd, 384bcd, 456bcd, 528bcd, 600bcd
 
Badness: 0.1161
 
==11-limit==
Commas: 243/242, 385/384, 9801/9800
 
POTE generator: ~225/224 = 2.161
 
Map: [<24 38 0 123 83|, <0 0 1 -1 0|]
 
EDOs: 24, 48, 72, 312bd, 384bcd, 456bcde, 528bcde
 
Badness: 0.0362
 
==13-limit==
Commas: 243/242, 351/350, 364/363, 385/384
 
POTE generator: ~225/224 = 3.955
 
Map: [<24 38 0 123 83 33|, <0 0 1 -1 0 1|]
 
EDOs: 24, 48f, 72, 168df, 240df
 
Badness: 0.0269
[[Category:family]]
[[Category:list]]
[[Category:overview]]
[[Category:pythagorean]]
[[Category:rank_2]]
[[Category:theory]]