User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(6 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave EDONAME tunings.
; [[zpi|ZPINAME]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
; [[EDONOI]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
; [[WE|ETNAME, SUBGROUP WE tuning]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
; EDONAME
* Step size: NNN{{c}}, octave size: NNN{{c}}
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}
; [[WE|ETNAME, SUBGROUP WE tuning]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
; [[EDONOI]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
; [[zpi|ZPINAME]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


= Title2 =
= Title2 =
Line 69: Line 26:
; High-priority
; High-priority


64edo
118edo (choose ZPIS)
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 165ed6
* 187edt
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 69edf
* 327zpi (18.767c)
* 13-limit WE (10.171c)
* 11-limit WE (18.755c)
* Best nearby ZPI(s)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 328zpi (18.721c)
* 180ed7
* 230ed12
* 149ed5


59edo (reduce # of edonoi or zpi)
103edo (narrow down edonoi, choose ZPIS)
* 152ed6
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 294zpi (20.399c)
* 163edt
* 211ed12
* 239ed5
* 295zpi (20.342c)
* 266ed6
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 289ed7
* 13-limit WE (20.320c)
* 356ed11
* 7-limit WE (20.301c)
* 369ed12
* 166ed7
* 381ed13
* 212ed12
* 421ed17
* 296zpi (20.282c)
* 466ed23
* 153ed6
* 13-limit WE (11.658c)
* Best nearby ZPI(s)


; Medium priority
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
; Medium-priority


25edo
25edo
Line 217: Line 191:
6edo
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
118edo (choose ZPIS)
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 187edt
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
103edo (narrow down edonoi, choose ZPIS)
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 259: Line 197:


; Low priority
; Low priority
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


125edo
125edo

Latest revision as of 07:35, 2 September 2025

Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Medium-priority

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

38edo

Approximation of harmonics in 38edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -7.2 +0.0 -7.4 -7.2 +10.1 +0.0 -14.4 -7.4 -14.5 -7.2 +12.1
Relative (%) +0.0 -22.9 +0.0 -23.3 -22.9 +32.1 +0.0 -45.7 -23.3 -45.8 -22.9 +38.3
Steps
(reduced)
38
(0)
60
(22)
76
(0)
88
(12)
98
(22)
107
(31)
114
(0)
120
(6)
126
(12)
131
(17)
136
(22)
141
(27)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)