Starling temperaments: Difference between revisions
m thuja |
m Update linking |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
* ''[[Flattie]]'' (+21/20) → [[Dicot family #Flattie|Dicot family]] | * ''[[Flattie]]'' (+21/20) → [[Dicot family #Flattie|Dicot family]] | ||
* ''[[Opossum]]'' (+28/27) → [[Trienstonic clan #Opossum|Trienstonic clan]] | * ''[[Opossum]]'' (+28/27) → [[Trienstonic clan #Opossum|Trienstonic clan]] | ||
* [[Diminished (temperament)|Diminished]] (+36/35) → [[ | * [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]] | ||
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]] | * [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]] | ||
* [[Augene]] (+64/63) → [[Augmented family #Augene|Augmented family]] | * [[Augene]] (+64/63) → [[Augmented family #Augene|Augmented family]] | ||
Line 12: | Line 12: | ||
* [[Mavila]] (+135/128) → [[Pelogic family #Mavila|Pelogic family]] | * [[Mavila]] (+135/128) → [[Pelogic family #Mavila|Pelogic family]] | ||
* [[Sensi]] (+245/243), [[Sensipent family #Sensi|Sensipent family]] | * [[Sensi]] (+245/243), [[Sensipent family #Sensi|Sensipent family]] | ||
* [[Muggles]] (+525/512) → [[Magic family #Muggles|Magic family]] | * [[Muggles]] (+525/512) → [[Magic family #Muggles|Magic family]] | ||
* [[Valentine]] (+1029/1024) → [[Gamelismic clan #Valentine|Gamelismic clan]] | * [[Valentine]] (+1029/1024) → [[Gamelismic clan #Valentine|Gamelismic clan]] | ||
* ''[[Diaschismic]]'' (+2048/2025) → [[Diaschismic family # | * ''[[Diaschismic]]'' (+2048/2025) → [[Diaschismic family #Septimal diaschismic|Diaschismic family]] | ||
* ''[[Wollemia]]'' (+2240/2187) → [[Tetracot family #Wollemia|Tetracot family]] | * ''[[Wollemia]]'' (+2240/2187) → [[Tetracot family #Wollemia|Tetracot family]] | ||
* ''[[Unicorn]]'' (+10976/10935) → [[Unicorn family #Unicorn|Unicorn family]] | * ''[[Unicorn]]'' (+10976/10935) → [[Unicorn family #Unicorn|Unicorn family]] | ||
Line 33: | Line 32: | ||
{{Main| Myna }} | {{Main| Myna }} | ||
In addition to 126/125, myna | 7-limit myna is naturally found by establishing a structure of thirds, by making [[7/6]] - [[6/5]] - [[49/40]] - [[5/4]] - [[9/7]] all equidistant (the distances between which are [[36/35]], [[49/48]], and [[50/49]]). 11-limit myna then arises from equating this neutral third to [[11/9]]. Myna's characteristic feature is that the pental thirds are tuned outwards so that the chroma between them ([[25/24]]) is twice the size of the interval between the pental and septimal thirds ([[36/35]]), leaving space for a neutral third in between. In that sense, it is opposed to [[keemic temperaments]], where the chroma between the pental thirds is the same as the distance between the pental and septimal thirds. | ||
In terms of commas tempered, in addition to 126/125, myna adds [[1728/1715]], the orwell comma, and [[2401/2400]], the breedsma. It can also be described as the {{nowrap|27 & 31}} temperament. It has 6/5 as a generator, and [[58edo]] can be used as a tuning, with [[89edo]] being a better one, and fans of round amounts in cents may like [[120edo]]. It is also possible to tune myna with pure fifths by taking 6<sup>1/10</sup> as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 42: | Line 43: | ||
: mapping generators: ~2, ~5/3 | : mapping generators: ~2, ~5/3 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 310.146 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 310.146 | ||
Line 50: | Line 49: | ||
* 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}} | * 7- and [[9-odd-limit]]: ~6/5 = {{monzo| 1/10 1/10 0 0}} | ||
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 9/10 9/10 0 0 | 17/10 7/10 0 0 }} | : {{monzo list| 1 0 0 0 | 0 1 0 0 | 9/10 9/10 0 0 | 17/10 7/10 0 0 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | ||
{{Optimal ET sequence|legend=1| 27, 31, 58, 89 }} | {{Optimal ET sequence|legend=1| 27, 31, 58, 89 }} | ||
Line 62: | Line 61: | ||
Mapping: {{mapping| 1 9 9 8 22 | 0 -10 -9 -7 -25 }} | Mapping: {{mapping| 1 9 9 8 22 | 0 -10 -9 -7 -25 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 310.144 | ||
Line 148: | Line 145: | ||
: mapping generators: ~2, ~49/45 | : mapping generators: ~2, ~49/45 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/45 = 154.579 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/45 = 154.579 | ||
Line 156: | Line 151: | ||
* [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }} | * [[7-odd-limit]]: ~49/45 = {{monzo| 4/13 0 -1/13 }} | ||
: {{monzo list| 1 0 0 0 | -5/13 0 11/13 0 | 0 0 1 0 | -3/13 0 17/13 0 }} | : {{monzo list| 1 0 0 0 | -5/13 0 11/13 0 | 0 0 1 0 | -3/13 0 17/13 0 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | ||
* [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }} | * [[9-odd-limit]]: ~49/45 = {{monzo| 3/11 -1/11 }} | ||
: {{monzo list| 1 0 0 0 | 0 1 0 0 | 5/11 13/11 0 0 | 4/11 17/11 0 0 }} | : {{monzo list| 1 0 0 0 | 0 1 0 0 | 5/11 13/11 0 0 | 4/11 17/11 0 0 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | ||
{{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }} | {{Optimal ET sequence|legend=1| 8d, 23d, 31, 101, 132c, 163c }} | ||
Line 177: | Line 172: | ||
* [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }} | * [[11-odd-limit]]: ~11/10 = {{monzo| 1/10 -1/5 0 0 1/10 }} | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 19/10 11/5 0 0 -11/10 }}, {{monzo| 27/10 13/5 0 0 -13/10 }}, {{monzo| 33/10 17/5 0 0 -17/10 }}, {{monzo| 19/5 12/5 0 0 -6/5 }}] | ||
: | : unchanged-interval (eigenmonzo) basis: 2.11/9 | ||
Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly. | Algebraic generator: positive root of 15''x''<sup>2</sup> - 10''x'' - 7, or (5 + sqrt (130))/15, at 154.6652 cents. The recurrence converges very quickly. | ||
Line 207: | Line 202: | ||
{{Mapping|legend=1| 1 6 7 8 | 0 -17 -18 -20 }} | {{Mapping|legend=1| 1 6 7 8 | 0 -17 -18 -20 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 311.679 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 311.679 | ||
Line 291: | Line 284: | ||
{{Mapping|legend=1| 1 4 4 3 | 0 -13 -9 -1 }} | {{Mapping|legend=1| 1 4 4 3 | 0 -13 -9 -1 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 222.797 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 222.797 | ||
Line 334: | Line 325: | ||
{{Mapping|legend=1| 1 7 10 15 | 0 -12 -17 -27 }} | {{Mapping|legend=1| 1 7 10 15 | 0 -12 -17 -27 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~135/98 = 541.828 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~135/98 = 541.828 | ||
Line 375: | Line 364: | ||
{{Mapping|legend=1| 2 1 2 2 | 0 9 11 15 }} | {{Mapping|legend=1| 2 1 2 2 | 0 9 11 15 }} | ||
[[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~35/27 = 455.445 | [[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~35/27 = 455.445 | ||
Line 424: | Line 411: | ||
{{Mapping|legend=1| 1 12 10 5 | 0 -19 -14 -4 }} | {{Mapping|legend=1| 1 12 10 5 | 0 -19 -14 -4 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/24 = 657.818 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/24 = 657.818 | ||
Line 439: | Line 424: | ||
Mapping: {{mapping| 1 12 10 5 4 | 0 -19 -14 -4 -1 }} | Mapping: {{mapping| 1 12 10 5 4 | 0 -19 -14 -4 -1 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923 | Optimal tuning (POTE): ~2 = 1\1, ~16/11 = 657.923 | ||
Line 465: | Line 448: | ||
Mapping: {{mapping| 1 12 10 5 21 | 0 -19 -14 -4 -32 }} | Mapping: {{mapping| 1 12 10 5 21 | 0 -19 -14 -4 -32 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791 | Optimal tuning (POTE): ~2 = 1\1, ~22/15 = 657.791 | ||
Line 508: | Line 489: | ||
{{Mapping|legend=1| 1 -2 2 9 | 0 11 1 -19 }} | {{Mapping|legend=1| 1 -2 2 9 | 0 11 1 -19 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.094 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.094 | ||
Line 542: | Line 521: | ||
Badness: 0.030666 | Badness: 0.030666 | ||
== Gilead == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 126/125, 343/324 | |||
{{Mapping|legend=1| 1 4 5 6 | 0 -9 -10 -12 }} | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1\1, ~6/5 = 321.109 | |||
* [[POTE]]: ~2 = 1\1, ~6/5 = 321.423 | |||
{{Optimal ET sequence|legend=1| 11cd, 15, 41dd, 56dd }} | |||
[[Badness]]: 0.115292 | |||
== Supersensi == | == Supersensi == | ||
Line 551: | Line 545: | ||
{{Mapping|legend=1| 1 -4 -4 -5 | 0 15 17 21 }} | {{Mapping|legend=1| 1 -4 -4 -5 | 0 15 17 21 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/270 = 446.568 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~343/270 = 446.568 | ||
Line 708: | Line 700: | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Starling temperaments| ]] <!-- main article --> | [[Category:Starling temperaments| ]] <!-- main article --> | ||
[[Category:Myna]] | [[Category:Myna]] | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |