Syntonic–diatonic equivalence continuum: Difference between revisions
m Text replacement - "{{Technical data page}}<br><br>" to "{{Technical data page}}" |
mNo edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
256/243 is the characteristic [[3-limit]] comma tempered out in 5edo, and has many advantages as a target. In each case, ''n'' equals the order of [[5/1|harmonic 5]] in the corresponding comma, and equals the number of generators to obtain a harmonic 3 in the generator chain. For example: | 256/243 is the characteristic [[3-limit]] comma tempered out in 5edo, and has many advantages as a target. In each case, ''n'' equals the order of [[5/1|harmonic 5]] in the corresponding comma, and equals the number of generators to obtain a harmonic 3 in the generator chain. For example: | ||
* Superpyth {{nowrap| | * Superpyth ({{nowrap| ''n'' {{=}} 1 }}) is generated by a fifth; | ||
* Immunity {{nowrap| | * Immunity ({{nowrap| ''n'' {{=}} 2 }}) splits its twelfth in two; | ||
* Rodan {{nowrap| | * Rodan ({{nowrap| ''n'' {{=}} 3 }}) splits its fifth in three; | ||
* Etc. | * Etc. | ||
At {{nowrap|''n'' {{=}} 5}}, the corresponding temperament splits the ''octave'' into five instead, as after a stack of five syntonic commas, both the orders of 3 and 5 are multiples of 5 again. | At {{nowrap| ''n'' {{=}} 5 }}, the corresponding temperament splits the ''octave'' into five instead, as after a stack of five syntonic commas, both the orders of 3 and 5 are multiples of 5 again. | ||
If we let {{nowrap|''k'' {{=}} ''n'' + 1}} so that {{nowrap|''k'' {{=}} 0}} means {{nowrap|''n'' {{=}} | If we let {{nowrap| ''k'' {{=}} ''n'' + 1 }} so that {{nowrap| ''k'' {{=}} 0 }} means {{nowrap|''n'' {{=}} −1}}, {{nowrap| ''k'' {{=}} 1 }} means {{nowrap| ''n'' {{=}} 0 }}, etc. then the continuum corresponds to {{nowrap| (81/80)<sup>''k''</sup> {{=}} 16/15 }}. Some prefer this way of conceptualising it because: | ||
* 16/15 is the classic diatonic semitone, notable in the 5-limit as the difference between 4/3 and 5/4, so this shifted continuum could also logically be termed the "syntonic–diatonic equivalence continuum". This means that at {{nowrap|''k'' {{=}} 0}}, 4/3 and 5/4 are mapped to the same interval while 81/80 becomes independent of 16/15 (meaning 81/80 may or may not be tempered) because the relation becomes {{nowrap|(81/80)<sup>0</sup> ~ 1/1 ~ 16/15}}. | * 16/15 is the classic diatonic semitone, notable in the 5-limit as the difference between 4/3 and 5/4, so this shifted continuum could also logically be termed the "syntonic–diatonic equivalence continuum". This means that at {{nowrap| ''k'' {{=}} 0 }}, 4/3 and 5/4 are mapped to the same interval while 81/80 becomes independent of 16/15 (meaning 81/80 may or may not be tempered out) because the relation becomes {{nowrap| (81/80)<sup>0</sup> ~ 1/1 ~ 16/15 }}. | ||
* {{nowrap|''k'' {{=}} 1}} and upwards (up to a point) represent temperaments with | * {{nowrap| ''k'' {{=}} 1 }} and upwards (up to a point) represent temperaments with the potential for reasonably good accuracy as equating at least one 81/80 with 16/15 seems like a good lower bound for a temperament intended to model JI. A good upper bound might be rodan ({{nowrap| ''k'' {{=}} 4 }}), with the only exception being meantone ({{nowrap| ''n'' {{=}} ''k'' {{=}} ∞ }}). (Temperaments corresponding to {{nowrap| ''k'' {{=}} 0, −1, −2, … }} are comparatively low-accuracy to the point of developing various intriguing structures and consequences.) | ||
* 16/15 is the simplest ratio to be tempered in the continuum. | * 16/15 is the simplest ratio to be tempered out in the continuum. | ||
{| class="wikitable center-1 center-2" | {| class="wikitable center-1 center-2" | ||
Line 32: | Line 32: | ||
| Laquadgu (5 & 28) | | Laquadgu (5 & 28) | ||
| [[177147/160000]] | | [[177147/160000]] | ||
| {{ | | {{Monzo| -8 11 -4 }} | ||
|- | |- | ||
| −2 | | −2 | ||
| −3 | | −3 | ||
| [[ | | [[Laconic]] | ||
| [[2187/2000]] | | [[2187/2000]] | ||
| {{ | | {{Monzo| -4 7 -3 }} | ||
|- | |- | ||
| −1 | | −1 | ||
Line 44: | Line 44: | ||
| [[Bug]] | | [[Bug]] | ||
| [[27/25]] | | [[27/25]] | ||
| {{ | | {{Monzo| 0 3 -2 }} | ||
|- | |- | ||
| 0 | | 0 | ||
Line 50: | Line 50: | ||
| [[Father]] | | [[Father]] | ||
| [[16/15]] | | [[16/15]] | ||
| {{ | | {{Monzo| 4 -1 -1 }} | ||
|- | |- | ||
| 1 | | 1 | ||
Line 56: | Line 56: | ||
| [[Blackwood]] | | [[Blackwood]] | ||
| [[256/243]] | | [[256/243]] | ||
| {{ | | {{Monzo| 8 -5 }} | ||
|- | |- | ||
| 2 | | 2 | ||
Line 62: | Line 62: | ||
| [[Superpyth]] | | [[Superpyth]] | ||
| [[20480/19683]] | | [[20480/19683]] | ||
| {{ | | {{Monzo| 12 -9 1 }} | ||
|- | |- | ||
| 3 | | 3 | ||
Line 68: | Line 68: | ||
| [[Immunity]] | | [[Immunity]] | ||
| [[1638400/1594323]] | | [[1638400/1594323]] | ||
| {{ | | {{Monzo| 16 -13 2 }} | ||
|- | |- | ||
| 4 | | 4 | ||
Line 74: | Line 74: | ||
| [[Rodan]] | | [[Rodan]] | ||
| [[131072000/129140163]] | | [[131072000/129140163]] | ||
| {{ | | {{Monzo| 20 -17 3 }} | ||
|- | |- | ||
| 5 | | 5 | ||
Line 80: | Line 80: | ||
| [[Vulture]] | | [[Vulture]] | ||
| [[10485760000/10460353203|(22 digits)]] | | [[10485760000/10460353203|(22 digits)]] | ||
| {{ | | {{Monzo| 24 -21 4 }} | ||
|- | |- | ||
| 6 | | 6 | ||
Line 86: | Line 86: | ||
| [[Quintile]] | | [[Quintile]] | ||
| (24 digits) | | (24 digits) | ||
| {{ | | {{Monzo| -28 25 -5 }} | ||
|- | |- | ||
| 7 | | 7 | ||
Line 92: | Line 92: | ||
| [[Hemiseven]] | | [[Hemiseven]] | ||
| (28 digits) | | (28 digits) | ||
| {{ | | {{Monzo| -32 29 -6 }} | ||
|- | |- | ||
| … | | … | ||
Line 103: | Line 103: | ||
| [[Meantone]] | | [[Meantone]] | ||
| [[81/80]] | | [[81/80]] | ||
| {{ | | {{Monzo| -4 4 -1 }} | ||
|} | |} | ||
We may invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. This may be called the '' | We may invert the continuum by setting ''m'' such that {{nowrap| 1/''m'' + 1/''n'' {{=}} 1 }}. This may be called the ''superpyth–diatonic equivalence continuum'', which is essentially the same thing. The just value of ''m'' is 1.3130…. The [[superpyth comma]] is both larger and more complex than the syntonic comma. As such, this continuum does not contain as many useful temperaments, but still interesting nonetheless. | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
Line 121: | Line 121: | ||
| [[Ultrapyth]] | | [[Ultrapyth]] | ||
| [[5242880/4782969]] | | [[5242880/4782969]] | ||
| {{ | | {{Monzo| 20 -14 1 }} | ||
|- | |- | ||
| 0 | | 0 | ||
| [[Blackwood]] | | [[Blackwood]] | ||
| [[256/243]] | | [[256/243]] | ||
| {{ | | {{Monzo| 8 -5 }} | ||
|- | |- | ||
| 1 | | 1 | ||
| [[Meantone]] | | [[Meantone]] | ||
| [[81/80]] | | [[81/80]] | ||
| {{ | | {{Monzo| -4 4 -1 }} | ||
|- | |- | ||
| 2 | | 2 | ||
| [[Immunity]] | | [[Immunity]] | ||
| [[1638400/1594323]] | | [[1638400/1594323]] | ||
| {{ | | {{Monzo| 16 -13 2 }} | ||
|- | |- | ||
| 3 | | 3 | ||
| 5 & 56 | | 5 & 56 | ||
| [[33554432000/31381059609]] | | [[33554432000/31381059609]] | ||
| {{ | | {{Monzo| 28 -22 3 }} | ||
|- | |- | ||
| … | | … | ||
Line 151: | Line 151: | ||
| [[Superpyth]] | | [[Superpyth]] | ||
| [[20480/19683]] | | [[20480/19683]] | ||
| {{ | | {{Monzo| 12 -9 1 }} | ||
|} | |} | ||
Line 159: | Line 159: | ||
! ''n'' !! ''m'' !! Temperament !! Comma | ! ''n'' !! ''m'' !! Temperament !! Comma | ||
|- | |- | ||
| −3/2 = −1.5 || 3/5 = 0.6 || [[University]] || {{ | | −3/2 = −1.5 || 3/5 = 0.6 || [[University]] || {{Monzo| 4 2 -3 }} | ||
|- | |- | ||
| −1/2 = −0.5 || 1/3 = 0.{{overline|3}} || [[Uncle]] || {{ | | −1/2 = −0.5 || 1/3 = 0.{{overline|3}} || [[Uncle]] || {{Monzo| 12 -6 -1 }} | ||
|- | |- | ||
| 1/3 = 0.{{overline|3}} || −1/2 = −0.5 || [[Dirt]] || {{ | | 1/3 = 0.{{overline|3}} || −1/2 = −0.5 || [[Dirt]] || {{Monzo| 28 -19 1 }} | ||
|- | |- | ||
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Counterpental]] || {{ | | 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Counterpental]] || {{Monzo| 36 -30 5 }} | ||
|- | |- | ||
| 7/2 = 3.5 || 7/5 = 1.4 || [[Septiquarter]] || {{ | | 7/2 = 3.5 || 7/5 = 1.4 || [[Septiquarter]] || {{Monzo| 44 -38 7 }} | ||
|- | |- | ||
| 21/5 = 4.2 || 21/16 = 1.3125 || 559 & | | 21/5 = 4.2 || 21/16 = 1.3125 || 559 & 2513 || {{Monzo| -124 109 -21 }} | ||
|- | |- | ||
| 9/2 = 4.5 || 9/7 = 1.{{overline|285714}} || 5 & | | 9/2 = 4.5 || 9/7 = 1.{{overline|285714}} || 5 & 118 || {{Monzo| -52 46 -9 }} | ||
|- | |- | ||
| 11/2 = 5.5 || 11/9 = 1.{{overline|2}} || 5 & | | 11/2 = 5.5 || 11/9 = 1.{{overline|2}} || 5 & 137 || {{Monzo| -60 54 -11 }} | ||
|} | |} | ||
Line 179: | Line 179: | ||
: ''For extensions, see [[Archytas clan #Superpyth]] and [[Jubilismic clan #Bipyth]].'' | : ''For extensions, see [[Archytas clan #Superpyth]] and [[Jubilismic clan #Bipyth]].'' | ||
In the 5-limit, superpyth tempers out [[20480/19683]]. It has a fifth generator of ~3/2 = ~ | In the 5-limit, superpyth tempers out [[20480/19683]]. It has a fifth generator of {{nowrap| ~3/2 {{=}} ~710{{c}} }} and ~5/4 is found at +9 generator steps, as an augmented second (C–D#). It corresponds to {{nowrap| ''n'' {{=}} 1 }}, meaning that the syntonic comma is equated with the diatonic semitone. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 190: | Line 190: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1197.6520{{c}}, ~3/2 = 708.6882{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -2.348 +4.385 -1.076 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.8213{{c}} | ||
: error map: {{val| 0.000 + | : error map: {{val| 0.000 +7.866 +2.078 }} | ||
{{Optimal ET sequence|legend=1| 5, 17, 22, 49, 120b, 169bbc }} | {{Optimal ET sequence|legend=1| 5, 17, 22, 49, 120b, 169bbc }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 3.17 | ||
== Uncle (5-limit) == | == Uncle (5-limit) == | ||
Line 213: | Line 213: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1189.7544{{c}}, ~3/2 = 724.6670{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -10.246 +12.466 +4.210 }} | ||
* [[CWE]]: ~2 = 1200. | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 731.7318{{c}} | ||
: error map: {{val| 0.000 +29.777 +23.296 }} | : error map: {{val| 0.000 +29.777 +23.296 }} | ||
{{Optimal ET sequence|legend=1| 5, 13, 18, 23bc }} | {{Optimal ET sequence|legend=1| 5, 13, 18, 23bc }} | ||
[[Badness]] | [[Badness]] (Sintel): 6.33 | ||
== Ultrapyth (5-limit) == | == Ultrapyth (5-limit) == | ||
: ''For extensions, see [[Archytas clan #Ultrapyth]].'' | : ''For extensions, see [[Archytas clan #Ultrapyth]].'' | ||
The 5-limit version of ultrapyth tempers out the [[ultrapyth comma]]. It is generated by a perfect fifth. The interval class of 5 is found at +14 fifths as a double-augmented unison (C–Cx). It corresponds to {{nowrap|''m'' {{=}} -1}} and {{nowrap|''n'' {{=}} 1/2}}. | The 5-limit version of ultrapyth tempers out the [[ultrapyth comma]]. It is generated by a perfect fifth. The interval class of 5 is found at +14 fifths as a double-augmented unison (C–Cx). It corresponds to {{nowrap| ''m'' {{=}} -1 }} and {{nowrap| ''n'' {{=}} 1/2 }}. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 238: | Line 236: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1196.4357{{c}}, ~3/2 = 711.7085{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -3.564 +6.189 -1.009 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5968{{c}} | ||
: error map: {{val| 0.000 +11. | : error map: {{val| 0.000 +11.642 +4.041 }} | ||
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37, 79bc, 116bbc }} | {{Optimal ET sequence|legend=1| 5, 27c, 32, 37, 79bc, 116bbc }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 18.7 | ||
== Dirt == | == Dirt == | ||
Line 261: | Line 259: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1195.8566{{c}}, ~3/2 = 713.0611{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -4.143 +6.963 -0.863 }} | ||
* [[CWE]]: ~2 = 1200.000, ~3/2 = 715. | * [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 715.3406{{c}} | ||
: error map: {{val| 0.000 +13.386 +5.157 }} | : error map: {{val| 0.000 +13.386 +5.157 }} | ||
{{Optimal ET sequence|legend=1| 5, 42c, 47b, 52b, 109bbc }} | {{Optimal ET sequence|legend=1| 5, 42c, 47b, 52b, 109bbc }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 55.3 | ||
== Rodan (5-limit) == | == Rodan (5-limit) == | ||
: ''For extensions, see [[Gamelismic clan #Rodan]].'' | : ''For extensions, see [[Gamelismic clan #Rodan]].'' | ||
The 5-limit version of rodan tempers out the [[rodan comma]], which is the difference between a stack of three [[729/640|retroptolemaic whole tones (729/640)]] and a perfect fifth (3/2). The only 7-limit extension that makes any sense to use is to add the gamelisma to the comma list. It corresponds to {{nowrap| ''n'' {{=}} 3 }}. | The 5-limit version of rodan tempers out the [[rodan comma]], which is the difference between a stack of three [[729/640|retroptolemaic whole tones (729/640)]] and a perfect fifth (3/2). The only 7-limit extension that makes any sense to use is to add the gamelisma to the comma list, whereby the generator represents [[8/7]]. It corresponds to {{nowrap| ''n'' {{=}} 3 }}. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 282: | Line 280: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1199.5618{{c}}, ~729/640 = 234.4424{{c}} | ||
: [[error map]]: {{val| 0. | : [[error map]]: {{val| -0.438 +0.934 -0.355 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.000{{c}}, ~729/640 = 234.4999{{c}} | ||
: error map: {{val| 0.000 +1. | : error map: {{val| 0.000 +1.545 +0.185 }} | ||
{{Optimal ET sequence|legend=1| 5, …, 41, 46, 87, 220, 307 }} | {{Optimal ET sequence|legend=1| 5, …, 41, 46, 87, 220, 307 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 3.95 | ||
== Laconic == | == Laconic == | ||
Line 301: | Line 299: | ||
{{Mapping|legend=1| 1 1 1 | 0 3 7 }} | {{Mapping|legend=1| 1 1 1 | 0 3 7 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1203.1925{{c}}, ~10/9 = 228.0305{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| +3.193 -14.671 +13.092 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.000{{c}}, ~10/9 = 228.0128{{c}} | ||
: error map: {{val| 0.000 - | : error map: {{val| 0.000 -17.917 +9.776 }} | ||
{{Optimal ET sequence|legend=1| 5, 11c, 16, 21, 37b }} | {{Optimal ET sequence|legend=1| 5, 11c, 16, 21, 37b }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 3.80 | ||
== University == | == University == | ||
Line 318: | Line 314: | ||
: ''For extensions, see [[Gamelismic clan #Gidorah]] and [[Mint temperaments #Penta]].'' | : ''For extensions, see [[Gamelismic clan #Gidorah]] and [[Mint temperaments #Penta]].'' | ||
Named by [[John Moriarty]], university is the 5 & 6b temperament, and tempers out [[144/125]], the triptolemaic diminished third. It corresponds to ''n'' = −3/2 and ''m'' = 3/5. In this temperament, two instances of [[6/5]] make a [[5/4]], and three make a [[3/2]]. Equating 6/5 with [[8/7]] (which makes sense since it is already very flat in the most accurate tunings of this temperament) leads to [[Gamelismic clan #Gidorah|gidorah]], and 6/5 with [[7/6]] leads to [[Mint temperaments #Penta|penta]]. | Named by [[John Moriarty]], university is the {{nowrap| 5 & 6b }} temperament, and tempers out [[144/125]], the triptolemaic diminished third. It corresponds to {{nowrap| ''n'' {{=}} −3/2 }} and {{nowrap| ''m'' {{=}} 3/5 }}. In this temperament, two instances of [[6/5]] make a [[5/4]], and three make a [[3/2]]. Equating 6/5 with [[8/7]] (which makes sense since it is already very flat in the most accurate tunings of this temperament) leads to [[Gamelismic clan #Gidorah|gidorah]], and 6/5 with [[7/6]] leads to [[Mint temperaments #Penta|penta]]. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 327: | Line 323: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1186.1969{{c}}, ~6/5 = 232.7334{{c}} | ||
: [[error map]]: {{val| | : [[error map]]: {{val| -13.803 -17.558 +51.547 }} | ||
* [[ | * [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 231.4822{{c}} | ||
: error map: {{val| 0.000 | : error map: {{val| 0.000 -7.509 +76.651 }} | ||
{{Optimal ET sequence|legend=1| 1b, …, 4bc, 5 }} | {{Optimal ET sequence|legend=1| 1b, …, 4bc, 5 }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 2.39 | ||
== Trisatriyo (5 & | <!-- | ||
== Trisatriyo (5 & 56) == | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: {{monzo| 28 -22 3 }} | [[Comma list]]: {{monzo| 28 -22 3 }} (33554432000/31381059609) | ||
{{Mapping|legend=1| 1 1 -2 | 0 3 22 }} | {{Mapping|legend=1| 1 1 -2 | 0 3 22 }} | ||
Line 346: | Line 343: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[POTE]]: ~2 = 1200.000, ~2560/2187 = 235.867 | * [[POTE]]: ~2 = 1200.000{{c}}, ~2560/2187 = 235.867{{c}} | ||
{{Optimal ET sequence|legend=1| 5, …, 51, 56, 117b, 173b }} | {{Optimal ET sequence|legend=1| 5, …, 51, 56, 117b, 173b }} | ||
Line 353: | Line 350: | ||
[http://x31eq.com/cgi-bin/rt.cgi?ets=5_56&limit=5 The temperament finder - 5-limit 5 & 56] | [http://x31eq.com/cgi-bin/rt.cgi?ets=5_56&limit=5 The temperament finder - 5-limit 5 & 56] | ||
--> | |||
== Hemiseven (5-limit) == | == Hemiseven (5-limit) == | ||
: ''For extensions, see [[Gamelismic clan #Hemiseven]].'' | : ''For extensions, see [[Gamelismic clan #Hemiseven]].'' | ||
Line 361: | Line 358: | ||
[[Comma list]]: {{monzo| 32 -29 6 }} | [[Comma list]]: {{monzo| 32 -29 6 }} | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 -2 -15 | 0 6 29 }} | ||
: mapping generators: ~2, ~ | : mapping generators: ~2, ~243/160 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1200.3725{{c}}, ~243/160 = 716.9750{{c}} | ||
: [[error map]]: {{val| +0.373 -0.850 +0.376 }} | |||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~243/160 = 716.7671{{c}} | |||
: error map: {{val| 0.000 -1.352 -0.067 }} | |||
{{Optimal ET sequence|legend=1| 5, | {{Optimal ET sequence|legend=1| 5, …, 72, 149, 221, 370, 591b }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 16.9 | ||
== Counterpental == | == Counterpental == | ||
Line 384: | Line 384: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~729/640 = 239.8575{{c}}, ~3/2 = 704.1540{{c}} | ||
: [[error map]]: {{val| -0.712 +1.487 -0.535 }} | |||
* [[CWE]]: ~729/640 = 240.0000{{c}}, ~3/2 = 704.4446{{c}} | |||
: error map: {{val| 0.000 +2.490 +0.354 }} | |||
{{Optimal ET sequence|legend=1| 5, …, 75, 80, 155, 390b, 545bbc }} | {{Optimal ET sequence|legend=1| 5, …, 75, 80, 155, 390b, 545bbc }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 35.2 | ||
== Septiquarter (5-limit) == | == Septiquarter (5-limit) == | ||
Line 397: | Line 400: | ||
[[Comma list]]: {{monzo| 44 -38 7 }} | [[Comma list]]: {{monzo| 44 -38 7 }} | ||
{{Mapping|legend=1| 1 | {{Mapping|legend=1| 1 -4 -28 | 0 7 38 }} | ||
: mapping generators: ~2, ~ | : mapping generators: ~2, ~177147/102400 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1199.7741{{c}}, ~177147/102400 = 957.3630{{c}} | ||
: [[error map]]: {{val| -0.226 +0.490 -0.194 }} | |||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~177147/102400 = 957.5367{{c}} | |||
: error map: {{val| 0.000 +0.802 +0.082 }} | |||
{{Optimal ET sequence|legend=1| 5, | {{Optimal ET sequence|legend=1| 5, …, 94, 99, 193, 292, 391, 1074b, 1465bb }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 22.8 | ||
== Quinla-tritrigu (5 & | <!-- | ||
== Quinla-tritrigu (5 & 118) == | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 418: | Line 425: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[POTE]]: ~2 = 1200.000, ~320/243 = 477.961 | * [[POTE]]: ~2 = 1200.000{{c}}, ~320/243 = 477.961{{c}} | ||
{{Optimal ET sequence|legend=1| 5, 108c, 113, 118, 1057, 1175, 1293, 1411, 1529, 1647, 1765, 1883, 2001b, 3884b }} | {{Optimal ET sequence|legend=1| 5, 108c, 113, 118, 1057, 1175, 1293, 1411, 1529, 1647, 1765, 1883, 2001b, 3884b }} | ||
Line 424: | Line 431: | ||
[[Badness]] (Smith): 0.617683 | [[Badness]] (Smith): 0.617683 | ||
== Tribilalegu (5 & | == Tribilalegu (5 & 137) == | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 434: | Line 441: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[POTE]]: ~2 = 1200.000, ~320/243 = 481.742 | * [[POTE]]: ~2 = 1200.000{{c}}, ~320/243 = 481.742{{c}} | ||
{{Optimal ET sequence|legend=1| 5, 127c, 132, 137, 553, 690b, 827b, 964b }} | {{Optimal ET sequence|legend=1| 5, 127c, 132, 137, 553, 690b, 827b, 964b }} | ||
Line 442: | Line 449: | ||
[http://x31eq.com/cgi-bin/rt.cgi?ets=5_137&limit=5 The temperament finder - 5-limit 5 & 137] | [http://x31eq.com/cgi-bin/rt.cgi?ets=5_137&limit=5 The temperament finder - 5-limit 5 & 137] | ||
== 559 & | == 559 & 2513 == | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 452: | Line 459: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[POTE]]: ~2 = 1200.0000, ~3355443200000/2541865828329 = 480.8595 | * [[POTE]]: ~2 = 1200.0000{{c}}, ~3355443200000/2541865828329 = 480.8595{{c}} | ||
{{Optimal ET sequence|legend=1| 5, 267c, 272c, 277, 559, 1395, 1954, 2513, 40767, 43280, 45793, 48306, 50819, 53332, 55845, 58358, 60871, 63384, 65897, 68410, 70923, 73436, 75949, 78462 }} | {{Optimal ET sequence|legend=1| 5, 267c, 272c, 277, 559, 1395, 1954, 2513, 40767, 43280, 45793, 48306, 50819, 53332, 55845, 58358, 60871, 63384, 65897, 68410, 70923, 73436, 75949, 78462 }} | ||
Line 459: | Line 466: | ||
[http://x31eq.com/cgi-bin/rt.cgi?ets=2513_559&limit=5 The temperament finder - 5-limit 2513 & 559] | [http://x31eq.com/cgi-bin/rt.cgi?ets=2513_559&limit=5 The temperament finder - 5-limit 2513 & 559] | ||
--> | |||
[[Category:5edo]] | [[Category:5edo]] | ||
[[Category:Equivalence continua]] | [[Category:Equivalence continua]] |