27edo: Difference between revisions
Swap intervals and notation sections, following other pages |
→Approximation to JI: -zeta peak index |
||
(46 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
27edo divides the [[octave]] in 27 equal parts each exactly 44{{frac|4|9}} [[cent]]s in size. | Assuming pure octaves, 27edo divides the [[octave]] in 27 equal parts each exactly 44{{frac|4|9}} [[cent]]s in size. Its fifth and harmonic seventh are both sharp by 9{{c}}, and the major third is the same 400-cent major third as [[12edo]], sharp by 13.7{{c}}. The result is that [[6/5]], [[7/5]], and especially [[7/6]] are all tuned more accurately than this. It can be considered the superpythagorean counterpart of [[19edo]], as its 5th is audibly indistinguishable from [[superpyth|1/3-septimal-comma superpyth]] in the same way that 19edo is audibly indistinguishable from [[1/3-comma meantone|1/3-syntonic-comma meantone]], where three fifths in 19edo reach a near-perfect [[6/5]] and [[5/3]] and three fifths in 27edo reaching a near-perfect [[7/6]] and [[12/7]]. | ||
Though 27edo's [[7-limit]] tuning is not highly accurate, it nonetheless is the smallest equal division to represent the [[7-odd-limit]] both [[consistent]]ly and distinctly—that is, everything in the [[7-odd-limit]] [[tonality diamond]] is uniquely represented by a certain number of steps of 27edo. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13.19 (no-11's, no-17's 19-limit) temperament. It also approximates [[19/10]], [[19/12]], and [[19/14]], so {{dash|0, 7, 13, 25|med}} does quite well as a 10:12:14:19 chord, with the major seventh 25\27 being less than one cent off from 19/10. Octave-inverted, these also form a quite convincing approximation of the main Bohlen–Pierce triads, 3:5:7 and 5:7:9, making 27 the smallest edo that can simulate tritave harmony, although it rapidly becomes rough if extended to the 11 and above, unlike a true tritave based system. | |||
27edo, with its 400 | 27edo, with its 400{{c}} major third, [[tempering out|tempers out]] the lesser diesis, [[128/125]], and the septimal comma, [[64/63]], and hence [[126/125]] as well. These it shares with 12edo, making some relationships familiar, and they both support the [[augene]] temperament. It shares with [[22edo]] tempering out the sensamagic comma [[245/243]] as well as 64/63, so that they both support the [[superpyth]] temperament, with four quite sharp "superpythagorean" fifths giving a sharp [[9/7]] in place of meantone's 5/4. | ||
Its step of 44.4{{c}}, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having very high [[harmonic entropy]]. In other words, there is a general perception of quartertones as being the most dissonant intervals. This property is shared with all edos between around 20 and 30. Intervals smaller than this tend to be perceived as unison and are more consonant as a result; intervals larger than this have less "tension" and thus are also more consonant. | |||
The [[chromatic semitone]] of 27edo, at 178{{c}}, is equal to a submajor second in size, meaning 27edo is a candidate for [[extraclassical tonality]] due to its sharp major third of 444 cents. | |||
=== Odd harmonics === | === Odd harmonics === | ||
{{Harmonics in equal|27}} | {{Harmonics in equal|27}} | ||
=== Octave stretch === | |||
Since the harmonics whose intervals it approximates well (3, 5, 7, 13, and 19) are all tuned sharp of just, 27edo is a prime candidate for [[stretched and compressed tuning|octave compression]]. The local zeta peak around 27 is at 27.086614, which corresponds to a step size of 44.3023{{c}}. More generally, narrowing the steps to between 44.2 and 44.35{{c}} would be better in theory; [[43edt]], [[70ed6]], [[90ed10]], and [[97ed12]] are good options if octave compression is acceptable, and these narrow the octaves by 5.75, 3.53, 4.11, and 2.55{{c}}, respectively. | |||
=== Subsets and supersets === | |||
Since 27 factors into primes as 3<sup>3</sup>, 27edo contains [[3edo]] and [[9edo]] as subsets. Multiplying it by 3 gives [[81edo]], which is a good [[meantone]] tuning. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | {| class="wikitable center-all right-2 left-3" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios<ref group="note">{{sg|27et|limit=2.3.5.7.13.19-[[subgroup]]}}</ref> | ||
! colspan="3" | [[Ups and downs notation | ! colspan="3" | [[Ups and downs notation]] ([[Enharmonic unisons in ups and downs notation|EUs]]: v<sup>4</sup>A1 and vm2) | ||
! [[Interval region]]s | |||
! | ! colspan="2" | [[Solfege]]s | ||
! colspan="2" | [[Solfege | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
| P1 | | P1 | ||
Line 33: | Line 39: | ||
| D | | D | ||
| unison | | unison | ||
| da | | da | ||
| do | | do | ||
|- | |- | ||
| 1 | | 1 | ||
| 44. | | 44.4 | ||
| [[28/27]], [[36/35]], [[39/38]], [[49/48]], [[50/49]], [[81/80]] | | [[28/27]], [[36/35]], [[39/38]], [[49/48]], [[50/49]], ''[[81/80]]'' | ||
| ^1, m2 | | ^1, m2 | ||
| up unison, minor 2nd | | up unison, minor 2nd | ||
| ^D, Eb | | ^D, Eb | ||
| diesis | | diesis | ||
| fra | | fra | ||
| di | | di | ||
|- | |- | ||
| 2 | | 2 | ||
| 88. | | 88.9 | ||
| [[16/15]], [[21/20]], [[25/24]], [[19/18]], [[20/19]] | | ''[[16/15]]'', [[21/20]], [[25/24]], [[19/18]], [[20/19]] | ||
| ^^1, ^m2 | | ^^1, ^m2 | ||
| dup unison, upminor 2nd | | dup unison, upminor 2nd | ||
| ^^D, ^Eb | | ^^D, ^Eb | ||
| minor second | | minor second | ||
| fru | | fru | ||
| ra | | ra | ||
|- | |- | ||
| 3 | | 3 | ||
| 133. | | 133.3 | ||
| [[15/14]], [[14/13]], [[13/12]] | | [[15/14]], [[14/13]], [[13/12]] | ||
| vA1, ~2 | | vA1, ~2 | ||
Line 69: | Line 69: | ||
| vD#, vvE | | vD#, vvE | ||
| neutral second | | neutral second | ||
| ri | | ri | ||
| ru | | ru | ||
|- | |- | ||
| 4 | | 4 | ||
| 177. | | 177.8 | ||
| [[10/9]] | | [[10/9]] | ||
| A1, vM2 | | A1, vM2 | ||
Line 81: | Line 79: | ||
| D#, vE | | D#, vE | ||
| small major second | | small major second | ||
| ro | | ro | ||
| reh | | reh | ||
|- | |- | ||
| 5 | | 5 | ||
| 222. | | 222.2 | ||
| [[8/7]], [[9/8]] | | [[8/7]], [[9/8]] | ||
| M2 | | M2 | ||
Line 93: | Line 89: | ||
| E | | E | ||
| large major second | | large major second | ||
| ra | | ra | ||
| re | | re | ||
|- | |- | ||
| 6 | | 6 | ||
| 266. | | 266.7 | ||
| [[7/6]] | | [[7/6]] | ||
| m3 | | m3 | ||
Line 105: | Line 99: | ||
| F | | F | ||
| subminor third | | subminor third | ||
| na | | na | ||
| ma | | ma | ||
|- | |- | ||
| 7 | | 7 | ||
| 311. | | 311.1 | ||
| [[6/5]], [[19/16]] | | [[6/5]], [[19/16]] | ||
| ^m3 | | ^m3 | ||
Line 117: | Line 109: | ||
| Gb | | Gb | ||
| minor third | | minor third | ||
| nu | | nu | ||
| me | | me | ||
|- | |- | ||
| 8 | | 8 | ||
| 355. | | 355.6 | ||
| [[16/13]] | | [[16/13]] | ||
| ~3 | | ~3 | ||
Line 129: | Line 119: | ||
| ^Gb | | ^Gb | ||
| neutral third | | neutral third | ||
| mi | | mi | ||
| mu | | mu | ||
|- | |- | ||
| 9 | | 9 | ||
| 400. | | 400.0 | ||
| [[5/4]], [[24/19]] | | [[5/4]], [[24/19]] | ||
| vM3 | | vM3 | ||
Line 141: | Line 129: | ||
| vF# | | vF# | ||
| major third | | major third | ||
| mo | | mo | ||
| mi | | mi | ||
|- | |- | ||
| 10 | | 10 | ||
| 444. | | 444.4 | ||
| [[9/7]], [[13/10]] | | [[9/7]], [[13/10]] | ||
| M3 | | M3 | ||
Line 153: | Line 139: | ||
| F# | | F# | ||
| supermajor third | | supermajor third | ||
| ma | | ma | ||
| mo | | mo | ||
|- | |- | ||
| 11 | | 11 | ||
| 488. | | 488.9 | ||
| [[4/3]] | | [[4/3]] | ||
| P4 | | P4 | ||
Line 165: | Line 149: | ||
| G | | G | ||
| fourth | | fourth | ||
| fa | | fa | ||
| fa | | fa | ||
|- | |- | ||
| 12 | | 12 | ||
| 533. | | 533.3 | ||
| [[ | | [[19/14]], [[26/19]], [[27/20]], [[48/35]] | ||
| ^4 | | ^4 | ||
| up 4th | | up 4th | ||
| Ab | | Ab | ||
| superfourth | | superfourth | ||
| fu/sha | | fu/sha | ||
| fih | | fih | ||
|- | |- | ||
| 13 | | 13 | ||
| 577. | | 577.8 | ||
| [[7/5]], [[18/13]] | | [[7/5]], [[18/13]] | ||
| ~4, ^d5 | | ~4, ^d5 | ||
Line 189: | Line 169: | ||
| ^^G, ^Ab | | ^^G, ^Ab | ||
| small tritone | | small tritone | ||
| fi/shu | | fi/shu | ||
| fi | | fi | ||
|- | |- | ||
| 14 | | 14 | ||
| 622. | | 622.2 | ||
| [[10/7]], [[13/9]] | | [[10/7]], [[13/9]] | ||
| vA4, ~5 | | vA4, ~5 | ||
Line 201: | Line 179: | ||
| vG#, vvA | | vG#, vvA | ||
| large tritone | | large tritone | ||
| po/si | | po/si | ||
| se | | se | ||
|- | |- | ||
| 15 | | 15 | ||
| 666. | | 666.7 | ||
| [[ | | [[19/13]], [[28/19]], [[35/24]], [[40/27]] | ||
| v5 | | v5 | ||
| down fifth | | down fifth | ||
| G# | | G# | ||
| subfifth | | subfifth | ||
| pa/so | | pa/so | ||
| sih | | sih | ||
|- | |- | ||
| 16 | | 16 | ||
| 711. | | 711.1 | ||
| [[3/2]] | | [[3/2]] | ||
| P5 | | P5 | ||
Line 225: | Line 199: | ||
| A | | A | ||
| fifth | | fifth | ||
| sa | | sa | ||
| so/sol | | so/sol | ||
|- | |- | ||
| 17 | | 17 | ||
| 755. | | 755.6 | ||
| [[14/9]], [[20/13]] | | [[14/9]], [[20/13]] | ||
| m6 | | m6 | ||
Line 237: | Line 209: | ||
| Bb | | Bb | ||
| subminor sixth | | subminor sixth | ||
| fla | | fla | ||
| lo | | lo | ||
|- | |- | ||
| 18 | | 18 | ||
| 800. | | 800.0 | ||
| [[8/5]], [[19/12]] | | [[8/5]], [[19/12]] | ||
| ^m6 | | ^m6 | ||
Line 249: | Line 219: | ||
| ^Bb | | ^Bb | ||
| minor sixth | | minor sixth | ||
| flu | | flu | ||
| le | | le | ||
|- | |- | ||
| 19 | | 19 | ||
| 844. | | 844.4 | ||
| [[13/8]] | | [[13/8]] | ||
| ~6 | | ~6 | ||
Line 261: | Line 229: | ||
| vA# | | vA# | ||
| neutral sixth | | neutral sixth | ||
| li | | li | ||
| lu | | lu | ||
|- | |- | ||
| 20 | | 20 | ||
| 888. | | 888.9 | ||
| [[5/3]], [[32/19]] | | [[5/3]], [[32/19]] | ||
| vM6 | | vM6 | ||
Line 273: | Line 239: | ||
| A# | | A# | ||
| major sixth | | major sixth | ||
| lo | | lo | ||
| la | | la | ||
|- | |- | ||
| 21 | | 21 | ||
| 933. | | 933.3 | ||
| [[12/7]] | | [[12/7]] | ||
| M6 | | M6 | ||
Line 285: | Line 249: | ||
| B | | B | ||
| supermajor sixth | | supermajor sixth | ||
| la | | la | ||
| li | | li | ||
|- | |- | ||
| 22 | | 22 | ||
| 977. | | 977.8 | ||
| [[7/4]], [[16/9]] | | [[7/4]], [[16/9]] | ||
| m7 | | m7 | ||
Line 297: | Line 259: | ||
| C | | C | ||
| harmonic seventh | | harmonic seventh | ||
| tha | | tha | ||
| ta | | ta | ||
|- | |- | ||
| 23 | | 23 | ||
| 1022. | | 1022.2 | ||
| [[9/5]] | | [[9/5]] | ||
| ^m7 | | ^m7 | ||
Line 309: | Line 269: | ||
| Db | | Db | ||
| large minor seventh | | large minor seventh | ||
| thu | | thu | ||
| te | | te | ||
|- | |- | ||
| 24 | | 24 | ||
| 1066. | | 1066.7 | ||
| [[ | | [[13/7]], [[24/13]], [[28/15]] | ||
| ~7 | | ~7 | ||
| mid 7th | | mid 7th | ||
| ^Db | | ^Db | ||
| neutral seventh | | neutral seventh | ||
| ti | | ti | ||
| tu | | tu | ||
|- | |- | ||
| 25 | | 25 | ||
| 1111. | | 1111.1 | ||
| [[15/8]], [[ | | ''[[15/8]]'', [[19/10]], [[36/19]], [[40/21]], [[48/25]] | ||
| vM7 | | vM7 | ||
| downmajor 7th | | downmajor 7th | ||
| vC# | | vC# | ||
| major seventh | | major seventh | ||
| to | | to | ||
| ti | | ti | ||
|- | |- | ||
| 26 | | 26 | ||
| 1155. | | 1155.6 | ||
| [[27/14]], [[35/18]], [[ | | [[27/14]], [[35/18]], [[49/25]], [[96/49]], ''[[160/81]]'' | ||
| M7 | | M7 | ||
| major 7th | | major 7th | ||
| C# | | C# | ||
| supermajor seventh | | supermajor seventh | ||
| ta | | ta | ||
| da | | da | ||
|- | |- | ||
| 27 | | 27 | ||
| 1200. | | 1200.0 | ||
| 2/1 | | [[2/1]] | ||
| P8 | | P8 | ||
| 8ve | | 8ve | ||
| D | | D | ||
| octave | | octave | ||
| da | | da | ||
| do | | do | ||
|} | |} | ||
<references group="note" /> | |||
=== Interval quality and chord names in color notation === | === Interval quality and chord names in color notation === | ||
Line 369: | Line 320: | ||
|- | |- | ||
! Quality | ! Quality | ||
! [[Color name | ! [[Color name]] | ||
! Monzo | ! Monzo format | ||
! Examples | ! Examples | ||
|- | |- | ||
| rowspan="2" | minor | | rowspan="2" | minor | ||
| zo | | zo | ||
| {a, b, 0, 1} | | {{monzo| a, b, 0, 1 }} | ||
| 7/6, 7/4 | | 7/6, 7/4 | ||
|- | |- | ||
| fourthward wa | | fourthward wa | ||
| {a, b}, b < | | {{monzo| a, b }}, {{nowrap|b < −1}} | ||
| 32/27, 16/9 | | 32/27, 16/9 | ||
|- | |- | ||
| upminor | | upminor | ||
| gu | | gu | ||
| {a, b, | | {{monzo| a, b, −1 }} | ||
| 6/5, 9/5 | | 6/5, 9/5 | ||
|- | |- | ||
| rowspan="2" | mid | | rowspan="2" | mid | ||
| tho | | tho | ||
| {a, b, 0, 0, 0, 1} | | {{monzo| a, b, 0, 0, 0, 1 }} | ||
| 13/12, 13/8 | | 13/12, 13/8 | ||
|- | |- | ||
| thu | | thu | ||
| {a, b, 0, 0, 0, | | {{monzo| a, b, 0, 0, 0, −1 }} | ||
| 16/13, 24/13 | | 16/13, 24/13 | ||
|- | |- | ||
| downmajor | | downmajor | ||
| yo | | yo | ||
| {a, b, 1} | | {{monzo| a, b, 1 }} | ||
| 5/4, 5/3 | | 5/4, 5/3 | ||
|- | |- | ||
| rowspan="2" | major | | rowspan="2" | major | ||
| fifthward wa | | fifthward wa | ||
| {a, b}, b > 1 | | {{monzo| a, b }}, {{nowrap|b > 1}} | ||
| 9/8, 27/16 | | 9/8, 27/16 | ||
|- | |- | ||
| ru | | ru | ||
| {a, b, 0, | | {{monzo| a, b, 0, −1 }} | ||
| 9/7, 12/7 | | 9/7, 12/7 | ||
|} | |} | ||
All 27edo chords can be named using ups and downs. Alterations are always enclosed in parentheses, additions never are. An up or down after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Here are the zo, gu, ilo, yo and ru triads: | All 27edo chords can be named using ups and downs. Alterations are always enclosed in parentheses, additions never are. An up or down after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Here are the zo, gu, ilo, yo and ru triads: | ||
Line 415: | Line 367: | ||
|- | |- | ||
! [[Color notation|Color of the 3rd]] | ! [[Color notation|Color of the 3rd]] | ||
! JI | ! JI chord | ||
! Notes as | ! Notes as edosteps | ||
! Notes of C | ! Notes of C chord | ||
! Written | ! Written name | ||
! Spoken | ! Spoken name | ||
|- | |- | ||
| zo | | zo | ||
Line 456: | Line 408: | ||
| C major or C | | C major or C | ||
|} | |} | ||
For a more complete list, see [[Ups and | For a more complete list, see [[Ups and downs notation #Chords and chord progressions]]. See also the [[22edo]] page. | ||
== Notation == | == Notation == | ||
Line 462: | Line 414: | ||
|+ style="font-size: 105%;" | Circle of fifths in 27edo | |+ style="font-size: 105%;" | Circle of fifths in 27edo | ||
|- style="white-space: nowrap;" | |- style="white-space: nowrap;" | ||
! | !Cents | ||
! colspan="2" | Extended<br />Pythagorean<br />notation | |||
! colspan="2" | | ! colspan="2" | Quartertone<br />notation | ||
|- | |- | ||
| 0 | | 0.0 | ||
| colspan="2" | C | | colspan="2" | C | ||
| colspan="2" | A{{sesquisharp2}} | | colspan="2" | A{{sesquisharp2}} | ||
|- | |- | ||
| 711. | | 711.1 | ||
| colspan="2" | G | | colspan="2" | G | ||
| colspan="2" | E{{sesquisharp2}} | | colspan="2" | E{{sesquisharp2}} | ||
|- | |- | ||
| 222. | | 222.2 | ||
| colspan="2" | D | | colspan="2" | D | ||
| B{{sesquisharp2}} | | B{{sesquisharp2}} | ||
| F{{sesquiflat2}} | |||
|- | |- | ||
| 933. | | 933.3 | ||
| colspan="2" | A | | colspan="2" | A | ||
| colspan="2" | C{{sesquiflat2}} | | colspan="2" | C{{sesquiflat2}} | ||
|- | |- | ||
| 444. | | 444.4 | ||
| colspan="2" | E | | colspan="2" | E | ||
| colspan="2" | G{{sesquiflat2}} | | colspan="2" | G{{sesquiflat2}} | ||
|- | |- | ||
| 1155. | | 1155.6 | ||
| colspan="2" | B | | colspan="2" | B | ||
| colspan="2" | D{{sesquiflat2}} | | colspan="2" | D{{sesquiflat2}} | ||
|- | |- | ||
| 666. | | 666.7 | ||
| colspan="2" | | | colspan="2" | F♯ | ||
| colspan="2" | A{{sesquiflat2}} | | colspan="2" | A{{sesquiflat2}} | ||
|- | |- | ||
| 177. | | 177.8 | ||
| colspan="2" | | | colspan="2" | C♯ | ||
| colspan="2" | E{{sesquiflat2}} | | colspan="2" | E{{sesquiflat2}} | ||
|- | |- | ||
| 888. | | 888.9 | ||
| colspan="2" | | | colspan="2" | G♯ | ||
| colspan="2" | B{{sesquiflat2}} | | colspan="2" | B{{sesquiflat2}} | ||
|- | |- | ||
| 400 | | 400.0 | ||
| colspan="2" | | | colspan="2" | D♯ | ||
| colspan="2" | F{{demiflat2}} | | colspan="2" | F{{demiflat2}} | ||
|- | |- | ||
| 1111. | | 1111.1 | ||
| colspan="2" | | | colspan="2" | A♯ | ||
| colspan="2" | C{{demiflat2}} | | colspan="2" | C{{demiflat2}} | ||
|- | |- | ||
| 622. | | 622.2 | ||
| colspan="2" | | | colspan="2" | E♯ | ||
| colspan="2" | G{{demiflat2}} | | colspan="2" | G{{demiflat2}} | ||
|- | |- | ||
| 133. | | 133.3 | ||
| | | B♯ | ||
| | | F𝄫 | ||
| colspan="2" | D{{demiflat2}} | | colspan="2" | D{{demiflat2}} | ||
|- | |- | ||
| 844. | | 844.4 | ||
| | | F𝄪 | ||
| | | C𝄫 | ||
| colspan="2" | A{{demiflat2}} | | colspan="2" | A{{demiflat2}} | ||
|- | |- | ||
| 355. | | 355.6 | ||
| | | C𝄪 | ||
| | | G𝄫 | ||
| colspan="2" | E{{demiflat2}} | | colspan="2" | E{{demiflat2}} | ||
|- | |- | ||
| 1066. | | 1066.7 | ||
| | | G𝄪 | ||
| | | D𝄫 | ||
| colspan="2" | B{{demiflat2}} | | colspan="2" | B{{demiflat2}} | ||
|- | |- | ||
| 577. | | 577.8 | ||
| | | D𝄪 | ||
| | | A𝄫 | ||
| colspan="2" | F{{demisharp2}} | | colspan="2" | F{{demisharp2}} | ||
|- | |- | ||
| 88. | | 88.9 | ||
| | | A𝄪 | ||
| | | E𝄫 | ||
| colspan="2" | C{{demisharp2}} | | colspan="2" | C{{demisharp2}} | ||
|- | |- | ||
| 800 | | 800.0 | ||
| | | E𝄪 | ||
| | | B𝄫 | ||
| colspan="2" | G{{demisharp2}} | | colspan="2" | G{{demisharp2}} | ||
|- | |- | ||
| 311. | | 311.1 | ||
| | | B𝄪 | ||
| | | F♭ | ||
| colspan="2" | D{{demisharp2}} | | colspan="2" | D{{demisharp2}} | ||
|- | |- | ||
| 1022. | | 1022.2 | ||
| colspan="2" | | | colspan="2" | C♭ | ||
| colspan="2" | A{{demisharp2}} | | colspan="2" | A{{demisharp2}} | ||
|- | |- | ||
| 533. | | 533.3 | ||
| colspan="2" | | | colspan="2" | G♭ | ||
| colspan="2" | E{{demisharp2}} | | colspan="2" | E{{demisharp2}} | ||
|- | |- | ||
| 44. | | 44.4 | ||
| colspan="2" | | | colspan="2" | D♭ | ||
| colspan="2" | B{{demisharp2}} | | colspan="2" | B{{demisharp2}} | ||
|- | |- | ||
| 755. | | 755.6 | ||
| colspan="2" | | | colspan="2" | A♭ | ||
| colspan="2" | F{{sesquisharp2}} | | colspan="2" | F{{sesquisharp2}} | ||
|- | |- | ||
| 266. | | 266.7 | ||
| colspan="2" | | | colspan="2" | E♭ | ||
| colspan="2" | C{{sesquisharp2}} | | colspan="2" | C{{sesquisharp2}} | ||
|- | |- | ||
| 977. | | 977.8 | ||
| colspan="2" | | | colspan="2" | B♭ | ||
| colspan="2" | G{{sesquisharp2}} | | colspan="2" | G{{sesquisharp2}} | ||
|- | |- | ||
| 488. | | 488.9 | ||
| colspan="2" | F | | colspan="2" | F | ||
| colspan="2" | D{{sesquisharp2}} | | colspan="2" | D{{sesquisharp2}} | ||
|- | |- | ||
| 0 | | 0.0 | ||
| colspan="2" | C | | colspan="2" | C | ||
| colspan="2" | A{{sesquisharp2}} | | colspan="2" | A{{sesquisharp2}} | ||
|} | |} | ||
=== Extended Pythagorean notation === | |||
27edo being a superpythagorean system, the 5/4 major third present in the 4:5:6 chord is technically an augmented second, since (for example) C–E is a 9/7 supermajor third and so the note located 5/4 above C must be notated as D♯. Conversely, the 6/5 minor third of a 10:12:15 chord is actually reached by a diminished fourth, since (for example) D–F is a 7/6 subminor third and so the note located 6/5 above D must be notated as G♭. The diminished 2nd is a descending interval, thus A♯ is higher than B♭. Though here very exaggerated, this should be familiar to those working with the Pythagorean scale (see [[53edo]]), and also to many classically trained violinists. | |||
=== Quartertone notation === | |||
Using standard [[chain-of-fifths notation]], a sharp (an augmented unison) raises a note by 4 edosteps, just one edostep beneath the following nominal, and the flat conversely lowers. The sharp is quite wide at about 178¢, sounding like a narrow major 2nd. C to C♯ describes the approximate 10/9 and 11/10 interval. An accidental can be divided in half, and the remaining places can then be filled in with half-sharps, half-flats, sesquisharps, and sesquiflats, reducing the need for double sharps and double flats. The half-sharp is notated as a quartertone, but at about 89¢ it sounds more like a narrow semitone. The gamut from C to D is C, D♭, C{{demisharp2}}, D{{demiflat2}}, C♯, and D, with many ascending intervals appearing to be descending on the staff. | |||
===Ups and downs notation=== | |||
27edo can be notated with [[ups and downs]], spoken as up, dup, downsharp, sharp, upsharp etc. and down, dud, upflat etc. Note that dup is equivalent to dudsharp and dud is equivalent to dupflat. | |||
{{Sharpness-sharp4a}} | |||
[[Alternative symbols for ups and downs notation|Alternatively,]] sharps and flats with arrows can be used, borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp4}} | |||
=== Sagittal notation === | |||
This notation is a subset of the notation for [[54edo #Sagittal notation|54edo]]. | |||
==== Evo and Revo flavors ==== | |||
<imagemap> | |||
File:27-EDO_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 487 0 647 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 270 106 [[8505/8192]] | |||
rect 270 80 380 106 [[27/26]] | |||
default [[File:27-EDO_Sagittal.svg]] | |||
</imagemap> | |||
==== Alternative Evo flavor ==== | |||
<imagemap> | |||
File:27-EDO_Alternative_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 511 0 671 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 270 106 [[8505/8192]] | |||
rect 270 80 380 106 [[27/26]] | |||
default [[File:27-EDO_Alternative_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:27-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 487 0 647 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 270 106 [[8505/8192]] | |||
rect 270 80 380 106 [[27/26]] | |||
default [[File:27-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation #Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this edo. | |||
{{ | === 6L 1s (archeotonic) notation === | ||
The notation of Tetracot[7]. The generator is the perfect 2nd. Notes are denoted as {{nowrap|LLLLLLs {{=}} CDEFGABC}}, and raising and lowering by a chroma ({{nowrap|L − s}}), 1 edostep in this instance, is denoted by ♯ and ♭. | |||
{| class="wikitable center-1 right-2 center-3 mw-collapsible mw-collapsed" | |||
|- | |||
! # | |||
! Cents | |||
! Note | |||
! Name | |||
! Associated ratio | |||
|- | |||
| 0 | |||
| 0.0 | |||
| C | |||
| perfect unison | |||
| [[1/1]] | |||
|- | |||
| 1 | |||
| 44.4 | |||
| C#, Dbbb | |||
| aug 1sn, triple-dim 2nd | |||
| [[40/39]], [[45/44]], [[55/54]], [[81/80]] | |||
|- | |||
| 2 | |||
| 88.9 | |||
| Cx, Dbb | |||
| double-aug 1sn, double-dim 2nd | |||
| [[16/15]], [[25/24]] | |||
|- | |||
| 3 | |||
| 133.3 | |||
| Db | |||
| dim 2nd | |||
| [[12/11]], [[13/12]] | |||
|- | |||
| 4 | |||
| 177.8 | |||
| D | |||
| perfect 2nd | |||
| [[10/9]], [[11/10]] | |||
|- | |||
| 5 | |||
| 222.2 | |||
| D#, Ebbb | |||
| aug 2nd, double-dim 3rd | |||
| [[9/8]] | |||
|- | |||
| 6 | |||
| 266.7 | |||
| Dx, Ebb | |||
| double-aug 2nd, dim 3rd | |||
| [[15/13]] | |||
|- | |||
| 7 | |||
| 311.1 | |||
| Eb | |||
| minor 3rd | |||
| [[6/5]] | |||
|- | |||
| 8 | |||
| 355.6 | |||
| E | |||
| major 3rd | |||
| [[11/9]], [[16/13]] | |||
|- | |||
| 9 | |||
| 400.0 | |||
| E#, Fbbb | |||
| aug 3rd, double-dim 4th | |||
| [[5/4]] | |||
|- | |||
| 10 | |||
| 444.4 | |||
| Ex, Fbb | |||
| double-aug 3rd, dim 4th | |||
| [[13/10]] | |||
|- | |||
| 11 | |||
| 488.9 | |||
| Ex#, Fb | |||
| minor 4th | |||
| [[4/3]] | |||
|- | |||
| 12 | |||
| 533.3 | |||
| F | |||
| major 4th | |||
| [[15/11]], [[27/20]] | |||
|- | |||
| 13 | |||
| 577.8 | |||
| F#, Gbbb | |||
| aug 4th, double-dim 5th | |||
| [[11/8]], [[18/13]] | |||
|- | |||
| 14 | |||
| 622.2 | |||
| Fx, Gbb | |||
| double-aug 4th, dim 5th | |||
| [[13/9]], [[16/11]] | |||
|- | |||
| 15 | |||
| 666.7 | |||
| Fx#, Gb | |||
| minor 5th | |||
| [[22/15]], [[40/27]] | |||
|- | |||
| 16 | |||
| 711.1 | |||
| G | |||
| major 5th | |||
| [[3/2]] | |||
|- | |||
| 17 | |||
| 755.6 | |||
| G#, Abbb | |||
| aug 5th, double-dim 6th | |||
| [[20/13]] | |||
|- | |||
| 18 | |||
| 800.0 | |||
| Gx, Abb | |||
| double-aug 5th, dim 6th | |||
| [[8/5]] | |||
|- | |||
| 19 | |||
| 844.4 | |||
| Ab | |||
| minor 6th | |||
| [[13/8]], [[18/11]] | |||
|- | |||
| 20 | |||
| 888.9 | |||
| A | |||
| major 6th | |||
| [[5/3]] | |||
|- | |||
| 21 | |||
| 933.3 | |||
| A#, Bbbb | |||
| aug 6th, double-dim 7th | |||
| [[26/15]] | |||
|- | |||
| 22 | |||
| 977.8 | |||
| Ax, Bbb | |||
| double-aug 6th, dim 7th | |||
| [[16/9]] | |||
|- | |||
| 23 | |||
| 1022.2 | |||
| Bb | |||
| perfect 7th | |||
| [[9/5]], [[20/11]] | |||
|- | |||
| 24 | |||
| 1066.7 | |||
| B | |||
| aug 7th | |||
| [[11/6]], [[24/13]] | |||
|- | |||
| 25 | |||
| 1111.1 | |||
| B#, Cbb | |||
| double-aug 7th, double-dim 8ve | |||
| [[15/8]], [[48/25]] | |||
|- | |||
| 26 | |||
| 1155.6 | |||
| Bx, Cb | |||
| triple-aug 7th, dim 8ve | |||
| [[39/20]], [[88/45]], [[108/55]], [[160/81]] | |||
|- | |||
| 27 | |||
| 1200.0 | |||
| C | |||
| 8ve | |||
| 2/1 | |||
|} | |||
{{clear}} | {{clear}} | ||
== Approximation to JI == | == Approximation to JI == | ||
[[File:27ed2.svg|250px|thumb|right|alt=alt : Your browser has no SVG support.|Selected 19-limit intervals approximated in 27edo]] | [[File:27ed2.svg|250px|thumb|right|alt=alt : Your browser has no SVG support.|Selected 19-limit intervals approximated in 27edo]] | ||
=== Interval mappings === | === Interval mappings === | ||
{{ | {{Q-odd-limit intervals|27}} | ||
{{ | {{Q-odd-limit intervals|27.1|apx=val|header=none|tag=none|title=15-odd-limit intervals by 27e val mapping}} | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
Line 615: | Line 796: | ||
| {{monzo| 43 -27 }} | | {{monzo| 43 -27 }} | ||
| {{mapping| 27 43 }} | | {{mapping| 27 43 }} | ||
| | | −2.89 | ||
| 2.88 | | 2.88 | ||
| 6.50 | | 6.50 | ||
Line 622: | Line 803: | ||
| 128/125, 20000/19683 | | 128/125, 20000/19683 | ||
| {{mapping| 27 43 63 }} | | {{mapping| 27 43 63 }} | ||
| | | −3.88 | ||
| 2.74 | | 2.74 | ||
| 6.19 | | 6.19 | ||
Line 629: | Line 810: | ||
| 64/63, 126/125, 245/243 | | 64/63, 126/125, 245/243 | ||
| {{mapping| 27 43 63 76 }} | | {{mapping| 27 43 63 76 }} | ||
| | | −3.71 | ||
| 2.39 | | 2.39 | ||
| 5.40 | | 5.40 | ||
Line 636: | Line 817: | ||
| 64/63, 91/90, 126/125, 169/168 | | 64/63, 91/90, 126/125, 169/168 | ||
| {{mapping| 27 43 63 76 100 }} | | {{mapping| 27 43 63 76 100 }} | ||
| | | −3.18 | ||
| 2.39 | | 2.39 | ||
| 5.39 | | 5.39 | ||
Line 643: | Line 824: | ||
| 64/63, 76/75, 91/90, 126/125, 169/168 | | 64/63, 76/75, 91/90, 126/125, 169/168 | ||
| {{mapping| 27 43 63 76 100 115 }} | | {{mapping| 27 43 63 76 100 115 }} | ||
| | | −3.18 | ||
| 2.18 | | 2.18 | ||
| 4.92 | | 4.92 | ||
Line 649: | Line 830: | ||
* 27et (27eg val) is lower in relative error than any previous equal temperaments in the 13-, 17-, and 19-limit. The next equal temperaments doing better in those subgroups are [[31edo|31]], 31, and [[46edo|46]], respectively. | * 27et (27eg val) is lower in relative error than any previous equal temperaments in the 13-, 17-, and 19-limit. The next equal temperaments doing better in those subgroups are [[31edo|31]], 31, and [[46edo|46]], respectively. | ||
* 27et is particularly strong in the 2.3.5.7.13.19 subgroup. The next equal temperament that does better in this subgroup is [[53edo|53]]. | * 27et is particularly strong in the 2.3.5.7.13.19 subgroup. The next equal temperament that does better in this subgroup is [[53edo|53]]. | ||
=== Uniform maps === | |||
{{Uniform map|edo=27}} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Line 728: | Line 912: | ||
=== Commas === | === Commas === | ||
27et [[tempering out|tempers out]] the following [[commas]]. (Note: This assumes the patent [[val]], {{val| 27 43 63 76 93 100 }}.) | |||
{| class="commatable wikitable center-all left-3 right-4 left-6" | {| class="commatable wikitable center-all left-3 right-4 left-6" | ||
Line 856: | Line 1,040: | ||
| 31.77 | | 31.77 | ||
| Loyo | | Loyo | ||
| Telepathma | | Telepathma | ||
|- | |- | ||
| 11 | | 11 | ||
Line 949: | Line 1,133: | ||
| 19th-partial chroma | | 19th-partial chroma | ||
|} | |} | ||
<references group="note" /> | |||
== Scales == | == Scales == | ||
=== MOS scales === | === MOS scales === | ||
{{Main|List of MOS scales in 27edo}} | {{Main|List of MOS scales in 27edo}} | ||
* Superpyth | * Superpyth pentic – Superpyth[5] [[2L 3s]] (gen = 11\27): 5 5 6 5 6 | ||
* | * Superpyth diatonic – Superpyth[7] [[5L 2s]] (gen = 11\27): 5 5 1 5 5 5 1 | ||
* Superpyth chromatic | * Superpyth chromatic – Superpyth[12] [[5L 7s]] (gen = 11\27): 4 1 1 4 1 4 1 4 1 1 4 1 | ||
* Superpyth | * Superpyth enharmonic – Superpyth[17] [[5L 12s]] (gen = 11\27): 1 3 1 1 3 1 1 1 3 1 1 3 1 1 3 1 1 | ||
* Augene[6] [[3L 3s]] (period = 9\27, gen = 2\27): 7 2 7 2 7 2 | * Augene[6] [[3L 3s]] (period = 9\27, gen = 2\27): 7 2 7 2 7 2 | ||
* Augene[9] [[3L 6s]] (period = 9\27, gen = 2\27): 5 2 2 5 2 2 5 2 2 | * Augene[9] [[3L 6s]] (period = 9\27, gen = 2\27): 5 2 2 5 2 2 5 2 2 | ||
Line 987: | Line 1,172: | ||
* enharmonic trichord octave species: 9 2 5 9 2, 2 9 5 2 9 | * enharmonic trichord octave species: 9 2 5 9 2, 2 9 5 2 9 | ||
* 5-limit / pental double harmonic hexatonic (Augmented[6] [[4M]]): 2 7 2 7 7 2, 7 7 2 2 7 2 | * 5-limit / pental double harmonic hexatonic (Augmented[6] [[4M]]): 2 7 2 7 7 2, 7 7 2 2 7 2 | ||
* Superpyth melodic minor | * Superpyth melodic minor – Superpyth 2|4 #6 #7 or 5|1 b3: 5 1 5 5 5 5 1 | ||
* Superpyth harmonic minor | * Superpyth harmonic minor – Superpyth 2|4 #7: 5 1 5 5 1 9 1 | ||
* Superpyth harmonic major | * Superpyth harmonic major – Superpyth 5|1 b6: 5 5 1 5 1 9 1 | ||
* Superpyth double harmonic major | * Superpyth double harmonic major – Superpyth 5|1 b2 b6: 1 9 1 5 1 9 1 | ||
* [[Zarlino]] / Ptolemy diatonic, "just" major: 5 4 2 5 4 5 2 | * [[Zarlino]] / Ptolemy diatonic, "just" major: 5 4 2 5 4 5 2 | ||
* "Just" minor (inverse of "just" major): 5 2 4 5 2 5 4 | * "Just" minor (inverse of "just" major): 5 2 4 5 2 5 4 | ||
Line 1,003: | Line 1,188: | ||
* [[SNS (2/1, 3/2, 5/4)-7|5-limit / pental double harmonic major]]: 2 7 2 5 2 7 2 | * [[SNS (2/1, 3/2, 5/4)-7|5-limit / pental double harmonic major]]: 2 7 2 5 2 7 2 | ||
* enharmonic tetrachord octave species: 9 1 1 5 9 1 1, 1 9 1 5 1 9 1 (also Superpyth double harmonic major), 1 1 9 5 1 1 9 | * enharmonic tetrachord octave species: 9 1 1 5 9 1 1, 1 9 1 5 1 9 1 (also Superpyth double harmonic major), 1 1 9 5 1 1 9 | ||
* [[The Pinetone System#The Pinetone diatonic|Pinetone diatonic]]: 4 3 4 5 4 3 4 | * [[The Pinetone System #The Pinetone diatonic|Pinetone diatonic]]: 4 3 4 5 4 3 4 | ||
* [[The Pinetone System#Pinetone octatonic scales|Pinetone major-harmonic octatonic]]: 4 3 4 2 3 4 3 4 | * [[The Pinetone System #Pinetone octatonic scales|Pinetone major-harmonic octatonic]]: 4 3 4 2 3 4 3 4 | ||
* [[The Pinetone System#Pinetone octatonic scales|Pinetone minor-harmonic octatonic]]: 4 3 2 4 3 4 4 3 | * [[The Pinetone System #Pinetone octatonic scales|Pinetone minor-harmonic octatonic]]: 4 3 2 4 3 4 4 3 | ||
* [[The Pinetone System#Pinetone diminished octatonic|Pinetone diminished octatonic]] / [[Porcusmine]]: 3 4 2 4 3 4 3 4 | * [[The Pinetone System #Pinetone diminished octatonic|Pinetone diminished octatonic]] / [[Porcusmine]]: 3 4 2 4 3 4 3 4 | ||
* [[The Pinetone System#Pinetone harmonic diminished octatonic|Pinetone harmonic diminished]]: 3 4 2 5 2 4 3 4 | * [[The Pinetone System #Pinetone harmonic diminished octatonic|Pinetone harmonic diminished]]: 3 4 2 5 2 4 3 4 | ||
* [[The Pinetone System#Pinetone chromatic|Pinetone chromatic]] / pinechrome: 1 3 3 1 3 2 3 1 3 3 1 3 | * [[The Pinetone System #Pinetone chromatic|Pinetone chromatic]] / pinechrome: 1 3 3 1 3 2 3 1 3 3 1 3 | ||
* 5-limit / pental double harmonic nonatonic (subset of Augene[12]): 2 5 2 2 5 2 5 2 2, 2 2 5 2 5 2 2 5 2 (Augene[9] [[4M]]) | * 5-limit / pental double harmonic nonatonic (subset of Augene[12]): 2 5 2 2 5 2 5 2 2, 2 2 5 2 5 2 2 5 2 (Augene[9] [[4M]]) | ||
* 5-limit / pental double harmonic decatonic (subset of Augene[12]): 2 5 2 2 3 2 2 5 2 2 | * 5-limit / pental double harmonic decatonic (subset of Augene[12]): 2 5 2 2 3 2 2 5 2 2 | ||
Line 1,014: | Line 1,199: | ||
* [[Blackdye]] / [[syntonic dipentatonic]] (superset of [[Zarlino]]): 1 4 2 4 1 4 2 4 1 4 | * [[Blackdye]] / [[syntonic dipentatonic]] (superset of [[Zarlino]]): 1 4 2 4 1 4 2 4 1 4 | ||
* [[Blackville]] / [[SNS ((2/1, 3/2)-5, 16/15)-10|5-limit dipentatonic]] (superset of [[Zarlino]]): 3 2 4 2 3 2 4 2 3 2 | * [[Blackville]] / [[SNS ((2/1, 3/2)-5, 16/15)-10|5-limit dipentatonic]] (superset of [[Zarlino]]): 3 2 4 2 3 2 4 2 3 2 | ||
* Direct sunlight (original/default tuning; subset of [[Sensi]][19]): 1 2 8 5 1 9 1 ((1, 3, 11, 16, 17, 26, 27)\27) | |||
Direct sunlight ( | * Hypersakura (original/default tuning; subset of Sensi[19]): 1 10 5 1 10 ((1 11 16 17 27)\27) | ||
* | |||
Hypersakura ( | |||
== Instruments == | == Instruments == | ||
Line 1,063: | Line 1,234: | ||
; [[Bryan Deister]] | ; [[Bryan Deister]] | ||
* [https://www.youtube.com/watch?v=hDP8cfJqWOI ''microtonal improvisation in 27edo''] (2023) | * [https://www.youtube.com/watch?v=hDP8cfJqWOI ''microtonal improvisation in 27edo''] (2023) | ||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=3Ty3FpmAdGA ''Happy Birthday in 27edo''] (2025) | |||
; [[Igliashon Jones]] | ; [[Igliashon Jones]] | ||
* [https://web.archive.org/web/20201127012539/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3 ''Sad Like Winter Leaves''] | * [https://web.archive.org/web/20201127012539/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3 ''Sad Like Winter Leaves''] – in Augene[12] tuned to 27edo | ||
* [[:File:Superpythagorean_Waltz.mp3|''Superpythagorean Waltz'']] (2012) | * [[:File:Superpythagorean_Waltz.mp3|''Superpythagorean Waltz'']] (2012) | ||
* [https://pixelarchipelago.bandcamp.com/track/stuttering-anticipation-27edo ''Stuttering Anticipation''] (2021) | * [https://pixelarchipelago.bandcamp.com/track/stuttering-anticipation-27edo ''Stuttering Anticipation''] (2021) | ||
Line 1,074: | Line 1,248: | ||
; [[Claudi Meneghin]] | ; [[Claudi Meneghin]] | ||
* [https://www.youtube.com/watch?v=nR8orkai8tQ ''Chorale in 27edo for Organ''] (2019) | * [https://www.youtube.com/watch?v=nR8orkai8tQ ''Chorale in 27edo for Organ''] (2019) | ||
; [[Herman Miller]] | |||
* ''[https://soundcloud.com/morphosyntax-1/nusu-laj-stille-nacht Stille Nacht (cover)]'' (2019) | |||
; [[NullPointerException Music]] | ; [[NullPointerException Music]] | ||
Line 1,085: | Line 1,262: | ||
; [[Gene Ward Smith]] | ; [[Gene Ward Smith]] | ||
* [https://www.archive.org/details/MusicForYourEars ''Music For Your Ears''] [https://www.archive.org/download/MusicForYourEars/musicfor.mp3 play] | * [https://www.archive.org/details/MusicForYourEars ''Music For Your Ears''] [https://www.archive.org/download/MusicForYourEars/musicfor.mp3 play] – the central portion is in 27edo, the rest in [[46edo]]. | ||
; [[Joel Taylor]] | ; [[Joel Taylor]] | ||
* [https://web.archive.org/web/20201127012922/http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3 ''Galticeran Sonatina''] | * [https://web.archive.org/web/20201127012922/http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3 ''Galticeran Sonatina''] – in Augene[12] tuned to 27edo | ||
; [[Tristan Bay]] | ; [[Tristan Bay]] | ||
* [https://youtu.be/R30aRbNtoIY ''Pitchblende''] (2023) | * [https://youtu.be/R30aRbNtoIY ''Pitchblende''] (2023) | ||
; [[Uncreative Name]] | |||
* [https://www.youtube.com/watch?v=dcQe6ebpGFU ''Autumn''] (2024) – in Blackdye, 27edo tuning | |||
; [[Chris Vaisvil]] | ; [[Chris Vaisvil]] | ||
Line 1,097: | Line 1,277: | ||
; [[Xotla]] | ; [[Xotla]] | ||
* "Funkrotonal" from ''Microtonal Allsorts'' (2023) | * "Funkrotonal" from ''Microtonal Allsorts'' (2023) – [https://open.spotify.com/track/1zjNkbm8kIkuCxtodyFCL0 Spotify] | [https://xotla.bandcamp.com/track/funkrotonal-27edo Bandcamp] | [https://www.youtube.com/watch?v=7gt1BBJuJsE YouTube] | ||
[[Category:Augene]] | [[Category:Augene]] | ||
[[Category:Listen]] | [[Category:Listen]] | ||
[[Category:Sensi]] | |||
[[Category:Superpyth]] | [[Category:Superpyth]] | ||
[[Category:Tetracot]] | [[Category:Tetracot]] | ||
[[Category:Twentuning]] | [[Category:Twentuning]] |