Meantone family: Difference between revisions

Experiment with error maps
 
(34 intermediate revisions by 8 users not shown)
Line 5: Line 5:
| ja =  
| ja =  
}}
}}
The [[5-limit]] parent [[comma]] of the '''meantone family''' is the syntonic comma, [[81/80]]. This is the one they all temper out. The [[period]] is an [[octave]], the [[generator]] is a [[3/2|fifth]], and four fifths go to make up a [[5/1]] interval.
{{Technical data page}}
The '''meantone family''' is the family of [[rank-2 temperament]]s that [[tempering out|temper out]] the syntonic comma, [[81/80]], and thus can all be seen as [[extension]]s of [[meantone]].  


== Meantone ==
== Meantone ==
{{Main| Meantone }}
{{Main| Meantone }}
Meantone is characterized by an [[2/1|octave]] [[period]], a [[3/2|fifth]] [[generator]], and the relationship that four fifths go to make up a [[5/1|5th harmonic]].


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 17: Line 20:


: mapping generators: ~2, ~3
: mapping generators: ~2, ~3
{{Multival|legend=1| 1 4 4 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 697.214
* [[WE]]: ~2 = 1201.3906{{c}}, ~3/2 = 697.0455{{c}}
: [[error map]]: {{val| 0 -4.741 +2.544 }}
: [[error map]]: {{val| +1.391 -3.519 +1.868 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 696.239
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}}
: [[error map]]: {{val| 0 -5.716 -1.359 }}
: error map: {{val| 0.000 -5.304 +0.291 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 36: Line 37:
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}


[[Badness]]: 0.007381
[[Badness]] (Sintel): 0.173


=== Extensions ===
=== Overview to extensions ===
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth,  
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the [[~]][[7/4]] at the double-augmented sixth, for a tuning between 33edo and 26edo.
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh,  
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh, for a tuning between 26edo and 19edo.
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh,  
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth, for a tuning between 19edo and 12edo.
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the ~7/4 at the double-augmented sixth,  
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh, for a tuning between 12edo and 5edo.
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth,  
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth, for an [[exotemperament]] never exactly well-tuned, and where 5edo is the only [[diamond monotone]] tuning, with a terrible 5-limit part.
Those all have a fifth as generator.
Those all have a fifth as generator.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~8/7 generator, two of which give the [[4/3|fourth]].
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~[[8/7]] generator, two of which give the [[4/3|fourth]].
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Liese adds {{monzo| -9 11 0 -3 }} with a ~10/7 generator, three of which give the [[3/1|twelfth]].
* Liese adds {{monzo| -9 11 0 -3 }} with a ~[[10/7]] generator, three of which give the [[3/1|twelfth]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~9/7 generator, four of which give the [[8/3|eleventh]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~[[9/7]] generator, four of which give the [[8/3|eleventh]].
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.


Line 73: Line 74:


Temperaments discussed elsewhere include
Temperaments discussed elsewhere include
* ''[[Plutus]]'' → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* ''[[Plutus]]'' (+15/14) → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* [[Godzilla]] → [[Slendro clan #Godzilla|Slendro clan]]
* [[Godzilla]] (+49/48) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* [[Mothra]] → [[Gamelismic clan #Mothra|Gamelismic clan]]
* [[Mothra]] (+1029/1024) → [[Gamelismic clan #Mothra|Gamelismic clan]]
* [[Mohaha]] → [[Rastmic clan #Mohaha|Rastmic clan]]
* ''[[Mohaha]]'' (+121/120) → [[Rastmic clan #Mohaha|Rastmic clan]]


The rest are considered below.
The rest are considered below.
Line 92: Line 93:


{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Multival|legend=1| 1 4 10 4 13 12 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 696.952
* [[WE]]: ~2 = 1201.2358{{c}}, ~3/2 = 697.2122{{c}}
: [[error map]]: {{val| 0 -5.003 +1.495 +0.695 }}
: [[error map]]: {{val| +1.236 -3.507 +2.535 -0.412 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 696.495
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}}
: [[error map]]: {{val| 0 -5.460 -0.334 -3.877 }}
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 115: Line 114:
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}


[[Badness]]: 0.013707
[[Badness]] (Sintel): 0.347


=== Undecimal meantone (huygens) ===
=== Undecimal meantone (huygens) ===
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{See also| Meantone vs meanpop }}
{{See also| Huygens vs meanpop }}


Undecimal meantone maps the [[11/8]] to the double-augmented third (C–E𝄪), and tridecimal meantone maps the [[13/8]] to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.  
Undecimal meantone<ref name="meantone & meanpop 2003">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_6048.html#6052 Yahoo! Tuning Group | ''good 11-limit meantones'']</ref> a.k.a. huygens<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10437.html Yahoo! Tuning Group | ''The meantone family'']</ref><ref name="meantone & meanpop 2004">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10864.html#10870 Yahoo! Tuning Group | ''names and definitions: meantone'']</ref> maps the [[11/8]] to the double-augmented third (C–E𝄪), and tridecimal meantone maps the [[13/8]] to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 128: Line 127:


Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
Wedgie: {{multival| 1 4 10 18 4 13 25 12 28 16 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.168
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.967
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Tuning ranges:  
Tuning ranges:  
Line 146: Line 143:
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.


Optimal ET sequence: {{Optimal ET sequence| 12, 19e, 31, 105, 136b }}
{{Optimal ET sequence|legend=0| 12, 19e, 31, 105, 136b }}


Badness: 0.017027
Badness (Sintel): 0.563


; Music
; Music
Line 161: Line 158:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.855
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.642
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Optimal ET sequence: {{Optimal ET sequence| 12f, 19e, 31 }}
{{Optimal ET sequence|legend=0| 12f, 19e, 31 }}


Badness: 0.018048
Badness (Sintel): 0.746


===== Meantonic =====
===== Meantonic =====
Line 182: Line 179:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.649
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.377
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fg, 19eg, 31, 50e }}
{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }}


Badness: 0.019037
Badness (Sintel): 0.970


====== 19-limit ======
====== 19-limit ======
Line 197: Line 194:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.555
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.273
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}}
 
Optimal ET sequence: {{Optimal ET sequence| 12fghh, 19egh, 31, 50e }}
 
Badness: 0.017846


===== Meantoid =====
{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }}
Dubbed ''meantoid'' here, this extension maps 17/16~19/18 to the augmented unison (C–C♯) and 19/16 to the augmented second (C–D♯). For any tuning flatter than 12edo, the sizes of 17/16 (augmented unison) and 18/17 (minor second) are inverted, so genuine septendecimal and undevicesimal harmony cannot be expected.


Subgroup: 2.3.5.7.11.13.17
Badness (Sintel): 1.09
 
Comma list: 51/50, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 | 0 1 4 10 18 15 7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.036
* POTE: ~2 = 1200.000, ~3/2 = 696.448
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 19eg, 31g }}
 
Badness: 0.019433
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 -10 | 0 1 4 10 18 15 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.216
* POTE: ~2 = 1200.000, ~3/2 = 696.394
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 19egh, 31gh }}
 
Badness: 0.017437


===== Huygens =====
===== Huygens =====
Line 246: Line 211:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.908
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.003
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.019982
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 261: Line 226:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.931
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.140
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.018047
Badness (Sintel): 1.10


==== Grosstone ====
==== Grosstone ====
Line 278: Line 243:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.258
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.264
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}}


Minimax tuning:  
Minimax tuning:  
Line 289: Line 254:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74 }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74 }}


Badness: 0.025899
Badness (Sintel): 1.07


===== 17-limit =====
===== 17-limit =====
Line 301: Line 266:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.300
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.335
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74g }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }}


Badness: 0.020889
Badness (Sintel): 1.06


===== 19-limit =====
===== 19-limit =====
Line 316: Line 281:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.327
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.380
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 31, 43, 74gh }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }}


Badness: 0.017611
Badness (Sintel): 1.07


==== Meridetone ====
==== Meridetone ====
Line 333: Line 298:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.516
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.529
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
: eigenmonzo (unchanged-interval) basis: 2.13/9
: unchanged-interval (eigenmonzo) basis: 2.13/9


Optimal ET sequence: {{Optimal ET sequence| 12f, 31f, 43 }}
{{Optimal ET sequence|legend=0| 12f, 31f, 43 }}


Badness: 0.026421
Badness (Sintel): 1.09


===== Meridetonic =====
===== Meridetonic =====
Line 352: Line 317:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.508
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.514
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fg, 31fg, 43 }}
{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }}


Badness: 0.027706
Badness (Sintel): 1.41


====== 19-limit ======
====== 19-limit ======
Line 367: Line 332:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.485
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.481
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12fghh, 31fgh, 43 }}
{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }}


Badness: 0.025315
Badness (Sintel): 1.54


===== Meridetoid =====
===== Sauveuric =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 51/50, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 | 0 1 4 10 18 27 7 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.610
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.376
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 31fg, 43g }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.027518
Badness (Sintel): 1.22


====== 19-limit ======
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 51/50, 57/56, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 -10 | 0 1 4 10 18 27 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 697.701
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 697.316
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19effgh, 31fgh, 43gh }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.023613
Badness (Sintel): 1.25


===== Sauveuric =====
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.538
* POTE: ~2 = 1200.000, ~3/2 = 697.644
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 43 }}
 
Badness: 0.023881
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.555
* POTE: ~2 = 1200.000, ~3/2 = 697.715
 
Optimal ET sequence: {{Optimal ET sequence| 12f, 43 }}
 
Badness: 0.020540
 
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 444: Line 379:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~26/15 = 948.611
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}}
* POTE: ~2 = 1200.000, ~26/15 = 948.465
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19e, 43, 62 }}
{{Optimal ET sequence|legend=0| 19e, 43, 62 }}


Badness: 0.031433
Badness (Sintel): 1.30


===== 17-limit =====
===== 17-limit =====
Line 459: Line 394:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~26/15 = 948.617
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}}
* POTE: ~2 = 1200.000, ~26/15 = 948.477
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19eg, 43, 62 }}
{{Optimal ET sequence|legend=0| 19eg, 43, 62 }}


Badness: 0.023380
Badness (Sintel): 1.19


===== 19-limit =====
===== 19-limit =====
Line 474: Line 409:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~19/11 = 948.609
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}}
* POTE: ~2 = 1200.000, ~19/11 = 948.473
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19egh, 43, 62 }}
{{Optimal ET sequence|legend=0| 19egh, 43, 62 }}


Badness: 0.018952
Badness (Sintel): 1.15


==== Semimeantone ====
==== Semimeantone ====
Line 491: Line 426:


Optimal tunings:  
Optimal tunings:  
* CTE: ~55/39 = 600.000, ~3/2 = 697.168
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}}
* POTE: ~55/39 = 600.000, ~3/2 = 697.005
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 38deefff, 50eff, 62, 136b }}
{{Optimal ET sequence|legend=0| 12f, , 50eff, 62, 136b }}


Badness: 0.040668
Badness (Sintel): 1.68


===== 17-limit =====
===== 17-limit =====
Line 506: Line 441:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 697.174
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 696.927
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 50eff, 62, 136bg }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }}


Badness: 0.031491
Badness (Sintel): 1.60


===== 19-limit =====
===== 19-limit =====
Line 521: Line 456:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 697.187
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 696.906
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 50eff, 62 }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }}


Badness: 0.024206
Badness (Sintel): 1.47


=== Meanpop ===
=== Meanpop ===
{{See also| Meantone vs meanpop }}
{{See also| Meantone vs meanpop }}


Meanpop maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.  
Meanpop<ref name="meantone & meanpop 2003"/><ref name="meantone & meanpop 2004"/> maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 540: Line 475:


: mapping generator: ~2, ~3
: mapping generator: ~2, ~3
{{Multival|legend=1| 1 4 10 -13 4 13 -24 12 -44 -71 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.531
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.434
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.5
: unchanged-interval (eigenmonzo) basis: 2.5


Tuning ranges:  
Tuning ranges:  
Line 558: Line 491:
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.


Optimal ET sequence: {{Optimal ET sequence| 12e, 19, 31, 81, 112b }}
{{Optimal ET sequence|legend=0| 12e, 19, 31, 81, 112b }}


Badness: 0.021543
Badness (Sintel): 0.712


; Music
; Music
Line 572: Line 505:


Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
Wedgie: {{multival| 1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.356
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.211
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
: eigenmonzo (unchanged-interval) basis: 2.13/11
: unchanged-interval (eigenmonzo) basis: 2.13/11


Tuning ranges:  
Tuning ranges:  
Line 587: Line 518:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


Optimal ET sequence: {{Optimal ET sequence| 19, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19, 31, 50, 81 }}


Badness: 0.020883
Badness (Sintel): 0.863


===== Meanpoppic =====
===== Meanpoppic =====
Line 599: Line 530:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.351
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.194
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19g, 31, 50, 81, 131bd }}
{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }}


Badness: 0.019953
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 614: Line 545:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.347
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.188
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19gh, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }}


Badness: 0.017791
Badness (Sintel): 1.08


===== Meanpoid =====
===== Meanpoid =====
Line 629: Line 560:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.439
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.408
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}}


Optimal ET sequence: {{Optimal ET sequence| 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.022870
Badness (Sintel): 1.17


====== 19-limit ======
====== 19-limit ======
Line 644: Line 575:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.484
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.499
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12ef, 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.020488
Badness (Sintel): 1.25


==== Meanplop ====
==== Meanplop ====
Line 657: Line 588:


Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
{{Multival|legend=1| 1 4 10 -13 -4 4 13 -24 -10 12 -44 -24 -71 -48 34 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.283
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.202
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
: eigenmonzo (unchanged-interval) basis: 2.11
: unchanged-interval (eigenmonzo) basis: 2.11


Optimal ET sequence: {{Optimal ET sequence| 12e, 19, 31f }}
{{Optimal ET sequence|legend=0| 12e, 19, 31f }}


Badness: 0.027666
Badness (Sintel): 1.14


===== 17-limit =====
===== 17-limit =====
Line 680: Line 609:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.407
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.414
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.026836
Badness (Sintel): 1.37


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 695: Line 624:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.473
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.497
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.023540
Badness (Sintel): 1.43


===== Meanploid =====
=== Meanenneadecal ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 51/50, 65/64, 78/77, 81/80, 85/84
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 | 0 1 4 10 -13 -4 7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 696.661
* POTE: ~2 = 1200.000, ~3/2 = 696.415
 
Optimal ET sequence: {{Optimal ET sequence| 12e, 19g, 31fg }}
 
Badness: 0.026094
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 65/64, 76/75, 78/77, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 -10 | 0 1 4 10 -13 -4 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 697.016
* POTE: ~2 = 1200.000, ~3/2 = 696.583
 
Optimal ET sequence: {{Optimal ET sequence| 12e, 19gh, 31fgh }}
 
Badness: 0.023104
 
=== Meanenneadecal ===
Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.  
Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.  


Line 740: Line 639:


Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
{{Multival|legend=1| 1 4 10 6 4 13 6 12 0 -18 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.153
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.250
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}}


Tuning ranges:  
Tuning ranges:  
Line 751: Line 648:
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]


Optimal ET sequence: {{Optimal ET sequence| 7d, 12, 19, 31e }}
{{Optimal ET sequence|legend=0| 7d, 12, 19, 31e }}


Badness: 0.021423
Badness (Sintel): 0.708


==== 13-limit ====
==== 13-limit ====
Line 761: Line 658:


Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
{{Multival|legend=1| 1 4 10 6 15 4 13 6 20 12 0 20 -18 5 30 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.098
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.146
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7df, 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }}


Badness: 0.021182
Badness (Sintel): 0.875


===== 17-limit =====
===== 17-limit =====
Line 780: Line 675:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.216
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.575
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.022980
Badness (Sintel): 1.17


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 795: Line 690:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.277
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.706
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.020293
Badness (Sintel): 1.23


===== Meanenneadecoid =====
==== Vincenzo ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 78/77
Comma list: 45/44, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 | 0 1 4 10 6 15 7 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.450
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.025
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dfg, 12f, 19g }}
{{Optimal ET sequence|legend=0| 7d, 12, 19 }}


Badness: 0.020171
Badness (Sintel): 1.02


====== 19-limit ======
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
 
Optimal tunings:
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}}
 
{{Optimal ET sequence|legend=0| 12, 19 }}
 
Badness (Sintel): 1.30
 
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 78/77
Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 -10 | 0 1 4 10 6 15 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.793
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.121
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dfgh, 12f, 19gh }}
{{Optimal ET sequence|legend=0| 12, 19 }}


Badness: 0.018045
Badness (Sintel): 1.36


==== Vincenzo ====
==== Meanundec ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 56/55, 65/64, 81/80
Comma list: 27/26, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.790
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.060
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12f, 19f }}


Badness: 0.024763
Badness (Sintel): 1.00


===== 17-limit =====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.011
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.858
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dg, 12f }}


Badness: 0.025535
Badness (Sintel): 1.09


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.120
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.131
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dgh, 12f }}


Badness: 0.022302
Badness (Sintel): 1.16


====== 23-limit ======
=== Meanundeci ===
Subgroup: 2.3.5.7.11.13.17.19.23
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).
 
Subgroup: 2.3.5.7.11


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 69/68, 81/80
Comma list: 33/32, 55/54, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 | 0 1 4 10 6 -4 -5 -3 -6 }}
Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.059
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.044
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.020139
Badness (Sintel): 1.04


====== 29-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80
Comma list: 33/32, 55/54, 65/64, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 | 0 1 4 10 6 -4 -5 -3 -6 -2 }}
Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.982
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.913
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.018168
Badness (Sintel): 1.09


====== 31-limit ======
=== Bimeantone ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].  


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80, 93/92
Subgroup: 2.3.5.7.11


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 }}
Comma list: 81/80, 126/125, 245/242
 
Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}
 
: mapping generators: ~63/44, ~3


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.798
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.750
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }}


Badness: 0.017069
Badness (Sintel): 1.26


====== 37-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92
Comma list: 81/80, 105/104, 126/125, 245/242


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.675
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.603
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}


Badness: 0.016129
Badness (Sintel): 1.19


====== 41-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41
Subgroup: 2.3.5.7.11.13.17


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.724
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.696
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 38df, 50 }}


Badness: 0.015356
Badness (Sintel): 1.15


====== 43-limit ======
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.716
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.688
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}}
 
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}
 
Badness (Sintel): 1.08


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
=== Trimean ===
{{See also| No-sevens subgroup temperaments #Superpine }}


Badness: 0.013906
Subgroup: 2.3.5.7.11


====== 47-limit ======
Comma list: 81/80, 126/125, 1344/1331
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43.47


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 95/94, 124/123
Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 4 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 1 }}
: mapping generators: ~2, ~11/10


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.685
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.676
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }}


Badness: 0.013818
Badness (Sintel): 1.68


===== Vincenzoid =====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 65/64
Comma list: 81/80, 126/125, 144/143, 364/363


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 | 0 1 4 10 6 -4 7 }}
Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.412
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.358
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dg, 12, 19g }}
{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }}


Badness: 0.022099
Badness (Sintel): 1.46


====== 19-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 65/64
Comma list: 81/80, 126/125, 144/143, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 -10 | 0 1 4 10 6 -4 7 9 }}
Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.950
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.725
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dgh, 12, 19gh }}
{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }}


Badness: 0.019904
Badness (Sintel): 1.28


==== Meanundec ====
== Flattone ==
Subgroup: 2.3.5.7.11.13
{{Main| Flattone }}


Comma list: 27/26, 40/39, 45/44, 56/55
In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C–B𝄫), [[7/6]] is a diminished third (C–E𝄫), and [[7/5]] is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].


Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 525/512
* CTE: ~2 = 1200.000, ~3/2 = 695.620
* POTE: ~2 = 1200.000, ~3/2 = 697.254


Optimal ET sequence: {{Optimal ET sequence| 7d, 12f, 19f }}
{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}


Badness: 0.024243
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1203.6308{{c}}, ~3/2 = 695.8782{{c}}
: [[error map]]: {{val| +3.631 -2.446 -2.801 -2.684 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}}
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }}


===== 17-limit =====
[[Minimax tuning]]:
Subgroup: 2.3.5.7.11.13.17
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}
[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.


Optimal tunings:
{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
* CTE: ~2 = 1200.000, ~3/2 = 696.279
* POTE: ~2 = 1200.000, ~3/2 = 697.586


Optimal ET sequence: {{Optimal ET sequence| 7dg, 12f }}
[[Badness]] (Sintel): 0.976


Badness: 0.021400
=== 11-limit ===
This can also be considered a no-sevens temperament: [[#Hypnotone|hypnotone]].


===== 19-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55
Comma list: 45/44, 81/80, 385/384


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}
Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}


Optimal tunings:  
Optimal tuning:  
* CTE: ~2 = 1200.000, ~3/2 = 696.849
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 698.118
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dgh, 12f }}
Tuning ranges:  
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Badness: 0.018996
{{Optimal ET sequence|legend=0| 7, 19, 26, 45, 71bc, 116bcde }}


=== Meanundeci ===
Badness (Sintel): 1.12
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).  


Subgroup: 2.3.5.7.11
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Comma list: 33/32, 55/54, 77/75
Comma list: 45/44, 65/64, 78/77, 81/80


Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}
Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.702
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 694.689
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 12e, 19e }}
Tuning ranges:  
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Badness: 0.031539
{{Optimal ET sequence|legend=0| 7, 19, 26, 45f, 71bcf, 116bcdef }}


==== 13-limit ====
Badness (Sintel): 0.920
Subgroup: 2.3.5.7.11.13


Comma list: 33/32, 55/54, 65/64, 77/75
== Flattertone ==
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C–Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.


Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 1875/1792
* CTE: ~2 = 1200.000, ~3/2 = 696.241
* POTE: ~2 = 1200.000, ~3/2 = 694.764


Optimal ET sequence: {{Optimal ET sequence| 7d, 12e, 19e }}
{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}


Badness: 0.026288
: mapping generators: ~2, ~3


=== Bimeantone ===
[[Optimal tuning]]s:
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].  
* [[WE]]: ~2 = 1204.4511{{c}}, ~3/2 = 694.3258{{c}}
: [[error map]]: {{val| +4.451 -3.178 -9.011 +3.554 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}}
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
[[Badness]] (Sintel): 2.43
==== 11-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 245/242
Comma list: 45/44, 81/80, 1375/1344
 
Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}


: mapping generators: ~63/44, ~3
Mapping: {{mapping| 1 0 -4 -24 -6 | 0 1 4 17 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~63/44 = 600.000, ~3/2 = 696.520
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}}
* POTE: ~63/44 = 600.000, ~3/2 = 696.016
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12, 26de, 38d, 50 }}
{{Optimal ET sequence|legend=0| 7d, 19d, 26 }}


Badness: 0.038122
Badness (Sintel): 1.53


==== 13-limit ====
; Music
Subgroup: 2.3.5.7.11.13
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] by [[Budjarn Lambeth]] (2024)


Comma list: 81/80, 105/104, 126/125, 245/242
== Dominant ==
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}
The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].


Optimal tunings:
Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
* CTE: ~55/39 = 600.000, ~3/2 = 696.341
* POTE: ~55/39 = 600.000, ~3/2 = 695.836


Optimal ET sequence: {{Optimal ET sequence| 12f, 26deff, 38df, 50 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.028817
[[Comma list]]: 36/35, 64/63


==== 17-limit ====
{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 105/104, 126/125, 189/187, 221/220
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1195.3384{{c}}, ~3/2 = 698.8478{{c}}
: [[error map]]: {{val| -4.662 -7.769 +9.077 +14.832 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}}
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}
[[Tuning ranges]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:
{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
* CTE: ~17/12 = 600.000, ~3/2 = 696.353
* POTE: ~17/12 = 600.000, ~3/2 = 695.783


Optimal ET sequence: {{Optimal ET sequence| 12f, 38df, 50 }}
[[Badness]] (Sintel): 0.524


Badness: 0.022666
=== 11-limit ===
Subgroup: 2.3.5.7.11


==== 19-limit ====
Comma list: 36/35, 56/55, 64/63
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220
Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}
Tuning ranges:  
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 600.000, ~3/2 = 696.384
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}}
* POTE: ~17/12 = 600.000, ~3/2 = 695.752
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}}


Optimal ET sequence: {{Optimal ET sequence| 12f, 26deff, 38df, 50 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }}


Badness: 0.017785
Badness (Sintel): 0.799


=== Trimean ===
==== 13-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 1344/1331
Comma list: 36/35, 56/55, 64/63, 66/65


Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}
Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}


: mapping generators: ~2, ~11/10
Optimal tunings:  
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}}


Optimal tunings:  
Tuning ranges:  
* CTE: ~2 = 1200.000, ~11/10 = 167.707
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* POTE: ~2 = 1200.000, ~11/10 = 167.805
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal ET sequence: {{Optimal ET sequence| 7d, 36d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 12f, 17c, 29cdef }}


Badness: 0.050729
Badness (Sintel): 0.996


==== 13-limit ====
==== Dominion ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 144/143, 364/363
Comma list: 26/25, 36/35, 56/55, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}
Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.712
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}}
* POTE: ~2 = 1200.000, ~11/10 = 167.790
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c }}


Badness: 0.035445
Badness (Sintel): 1.13


==== 17-limit ====
=== Domineering ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 144/143, 189/187, 221/220
Comma list: 36/35, 45/44, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}
Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 167.705
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}}
* POTE: ~2 = 1200.000, ~11/10 = 167.786
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7dg, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5e, 7, 12 }}


Badness: 0.025221
Badness (Sintel): 0.727


== Flattone ==
==== 13-limit ====
{{Main| Flattone }}
Subgroup: 2.3.5.7.11.13
 
Comma list: 36/35, 45/44, 52/49, 64/63


In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C–B𝄫), [[7/6]] is a diminished third (C–E𝄫), and [[7/5]] is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].
Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}


[[Subgroup]]: 2.3.5.7
Optimal tunings:  
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}}


[[Comma list]]: 81/80, 525/512
{{Optimal ET sequence|legend=0| 7, 12 }}


{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}
Badness (Sintel): 1.12


{{Multival|legend=1| 1 4 -9 4 -17 -32 }}
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


[[Optimal tuning]]s:  
Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
* [[CTE]]: ~2 = 1200.000, ~3/2 = 693.552
* [[POTE]]: ~2 = 1200.000, ~3/2 = 693.779


[[Minimax tuning]]:  
Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7


[[Tuning ranges]]:  
Optimal tunings:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}}
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}}
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.
{{Optimal ET sequence|legend=0| 7, 12 }}


{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
Badness (Sintel): 1.25


[[Badness]]: 0.038553
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


=== 11-limit ===
Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56
Subgroup: 2.3.5.7.11


Comma list: 45/44, 81/80, 385/384
Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}


Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}
Optimal tunings:  
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}}


Optimal tuning:
{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }}
* CTE: ~2 = 1200.000, ~3/2 = 693.251
* POTE: ~2 = 1200.000, ~3/2 = 693.126


Tuning ranges:
Badness (Sintel): 1.24
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 7, 19, 26, 45, 71bc, 116bcde }}
==== Dominatrix ====
Subgroup: 2.3.5.7.11.13


Badness: 0.033839
Comma list: 27/26, 36/35, 45/44, 64/63


=== 13-limit ===
Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 65/64, 78/77, 81/80
 
Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 693.029
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 693.058
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}}


Tuning ranges:
{{Optimal ET sequence|legend=0| 5e, 7, 12f }}
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 7, 19, 26, 45f, 71bcf, 116bcdef }}
Badness (Sintel): 0.756


Badness: 0.022260
=== Domination ===
Subgroup: 2.3.5.7.11


== Flattertone ==
Comma list: 36/35, 64/63, 77/75
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C–Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}


[[Comma list]]: 81/80, 1875/1792
Optimal tunings:  
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}}


{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


: mapping generators: ~2, ~3
Badness (Sintel): 1.21


[[Optimal tuning]]s:
==== 13-limit ====
* [[CTE]]: ~2 = 1200.000, ~3/2 = 692.698
Subgroup: 2.3.5.7.11.13
* [[CWE]]: ~2 = 1200.000, ~3/2 = 692.0479


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
Comma list: 26/25, 36/35, 64/63, 66/65


[[Badness]]: 0.0961
Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}


==== 11-limit ====
Optimal tunings:
[[Subgroup]]: 2.3.5.7
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}}


[[Comma list]]: 45/44, 81/80, 1375/1344
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


{{Mapping|legend=1| 1 0 -4 -24 0| 0 1 4 17 6 }}
Badness (Sintel): 1.13


: mapping generators: ~2, ~3
=== Arnold ===
Subgroup: 2.3.5.7.11


[[Optimal tuning]]s:  
Comma list: 22/21, 33/32, 36/35
* [[CTE]]: ~2 = 1200.000, ~3/2 = 692.642
* [[CWE]]: ~2 = 1200.000, ~3/2 = 692.042


Optimal ET sequence: {{Optimal ET sequence| 7d, 19d, 26, 59bcd, 85bccd }}
Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}


'''Music'''
Optimal tunings:
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] - [[Budjarn Lambeth]] (2024)
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}}


== Dominant ==
{{Optimal ET sequence|legend=0| 5, 7, 12e }}
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].
Badness (Sintel): 0.864


Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Subgroup]]: 2.3.5.7
Comma list: 22/21, 27/26, 33/32, 36/35


[[Comma list]]: 36/35, 64/63
Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}


{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
Optimal tunings:
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}}


{{Multival|legend=1| 1 4 -2 4 -6 -16 }}
{{Optimal ET sequence|legend=0| 5, 7 }}


[[Optimal tuning]]s:  
Badness (Sintel): 0.963
* [[CTE]]: ~2 = 1200.000, ~3/2 = 699.622
* [[POTE]]: ~2 = 1200.000, ~3/2 = 701.573


[[Tuning ranges]]:
==== 17-limit ====
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
Subgroup: 2.3.5.7.11.13.17
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49


[[Badness]]: 0.020690
Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}


=== 11-limit ===
Optimal tunings:
Subgroup: 2.3.5.7.11
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}}
 
{{Optimal ET sequence|legend=0| 5, 7 }}
 
Badness (Sintel): 1.25


Comma list: 36/35, 56/55, 64/63
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19


Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56


Tuning ranges:  
Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 703.334
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 703.254
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 29cde }}
{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }}


Badness: 0.024180
Badness (Sintel): 1.28


==== 13-limit ====
== Sharptone ==
Subgroup: 2.3.5.7.11.13
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.


Comma list: 36/35, 56/55, 64/63, 66/65
However, while 12edo ends up near-optimal, the only valid [[diamond monotone]] tuning for sharptone is [[5edo]]. Anything flat of it has ~12/7 and ~7/4 in the wrong order (and so should be dominant) and anything sharp of it has ~5/4 and ~4/3 in the wrong order (and so should not be meantone).


Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}
The 11-limit extension was named by Gene Ward Smith in 2004<ref name="meantone & meanpop 2004"/>.


Optimal tunings:  
[[Subgroup]]: 2.3.5.7
* CTE: ~2 = 1200.000, ~3/2 = 704.847
* POTE: ~2 = 1200.000, ~3/2 = 703.636


Tuning ranges:
[[Comma list]]: 21/20, 28/27
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal ET sequence: {{Optimal ET sequence|12f, 17c, 29cdef }}
{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}


Badness: 0.024108
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1204.2961{{c}}, ~3/2 = 702.6463{{c}}
: [[error map]]: {{val| +4.296 +4.987 +24.271 -56.591 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}}
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }}


==== Dominion ====
{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
Subgroup: 2.3.5.7.11.13
 
[[Badness]] (Sintel): 0.629
 
=== Meanertone ===
Subgroup: 2.3.5.7.11


Comma list: 26/25, 36/35, 56/55, 64/63
Comma list: 21/20, 28/27, 33/32


Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}
Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 704.034
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 704.905
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}}
 
{{Optimal ET sequence|legend=0| 5, 7d, 12de }}


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 46cde }}
Badness (Sintel): 0.832


Badness: 0.027295
== Supermean ==
Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends [[leapfrog]].  


=== Domineering ===
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 64/63
[[Comma list]]: 81/80, 672/625


Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}
{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}


Optimal tunings:  
[[Optimal tuning]]s:  
* CTE: ~2 = 1200.000, ~3/2 = 696.240
* [[WE]]: ~2 = 1195.4372{{c}}, ~3/2 = 702.2086{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 698.776
: [[error map]]: {{val| -4.563 -4.309 +22.521 -8.319 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}}
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }}


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12, 19d, 43de }}
{{Optimal ET sequence|legend=1| 5d, 12d, 17c }}


Badness: 0.021978
[[Badness]] (Sintel): 3.40


==== 13-limit ====
=== 11-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 52/49, 64/63
Comma list: 56/55, 81/80, 132/125


Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}
Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.315
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 695.762
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c }}


Badness: 0.027039
Badness (Sintel): 2.09


===== 17-limit =====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
Comma list: 26/25, 56/55, 66/65, 81/80


Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 695.894
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.115
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }}


Badness: 0.024539
Badness (Sintel): 1.67


===== 19-limit =====
== Mohajira ==
Subgroup: 2.3.5.7.11.13.17.19
{{Main| Mohajira }}


Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56
Mohajira can be viewed as derived from mohaha which maps the interval half a [[chromatic semitone|chroma]] flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the [[porwell comma]]. It can be described as {{nowrap| 24 & 31 }}; its ploidacot is dicot. [[31edo]] makes for an excellent mohajira tuning, with generator 9\31.


Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 6144/6125
* CTE: ~2 = 1200.000, ~3/2 = 696.139
* POTE: ~2 = 1200.000, ~3/2 = 696.217


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Mapping|legend=1| 1 1 0 6 | 0 2 8 -11 }}


Badness: 0.020398
: mapping generators: ~2, ~128/105


==== Dominatrix ====
[[Optimal tuning]]s:
Subgroup: 2.3.5.7.11.13
* [[WE]]: ~2 = 1200.8160{{c}}, ~128/105 = 348.6518{{c}}
: [[error map]]: {{val| +0.816 -3.835 +2.901 +0.900 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}}
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }}


Comma list: 27/26, 36/35, 45/44, 64/63
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 6 0 -11/8 0 }}
: [[eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.5


Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}
[[Tuning ranges]]:
 
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
Optimal tunings:  
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* CTE: ~2 = 1200.000, ~3/2 = 694.840
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]
* POTE: ~2 = 1200.000, ~3/2 = 698.544
 
[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.
 
{{Optimal ET sequence|legend=1| 7, 24, 31 }}


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12f, 19df }}
[[Badness]] (Sintel): 1.41


Badness: 0.018289
Scales: [[mohaha7]], [[mohaha10]]


=== Domination ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 36/35, 64/63, 77/75
Comma list: 81/80, 121/120, 176/175


Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}
Mapping: {{mapping| 1 1 0 6 2 | 0 2 8 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 703.268
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 705.004
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c, 46cd }}
Minimax tuning:  
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: projection map: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.5


Badness: 0.036562
Tuning ranges:
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


==== 13-limit ====
{{Optimal ET sequence|legend=0| 7, 24, 31 }}
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 36/35, 64/63, 66/65
Badness (Sintel): 0.862


Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}
Scales: [[mohaha7]], [[mohaha10]]


Optimal tunings:
=== 13-limit ===
* CTE: ~2 = 1200.000, ~3/2 = 703.719
Subgroup: 2.3.5.7.11.13
* POTE: ~2 = 1200.000, ~3/2 = 705.496


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c }}
Comma list: 66/65, 81/80, 105/104, 121/120


Badness: 0.027435
Mapping: {{mapping| 1 1 0 6 2 4 | 0 2 8 -11 5 -1 }}


=== Arnold ===
Optimal tunings:
Subgroup: 2.3.5.7.11
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}}


Comma list: 22/21, 33/32, 36/35
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}
Badness (Sintel): 0.966


Optimal tunings:  
Scales: [[mohaha7]], [[mohaha10]]
* CTE: ~2 = 1200.000, ~3/2 = 698.546
* POTE: ~2 = 1200.000, ~3/2 = 698.491


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12e }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.026141
Comma list: 66/65, 81/80, 105/104, 121/120, 154/153


==== 13-limit ====
Mapping: {{mapping| 1 1 0 6 2 4 7 | 0 2 8 -11 5 -1 -10 }}
Subgroup: 2.3.5.7.11.13


Comma list: 22/21, 27/26, 33/32, 36/35
Optimal tunings:  
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}}


Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Optimal tunings:  
Badness (Sintel): 1.05
* CTE: ~2 = 1200.000, ~3/2 = 695.929
* POTE: ~2 = 1200.000, ~3/2 = 696.743


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
Scales: [[mohaha7]], [[mohaha10]]


Badness: 0.023300
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


==== 17-limit ====
Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152
Subgroup: 2.3.5.7.11.13.17


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49
Mapping: {{mapping| 1 1 0 6 2 4 7 6 | 0 2 8 -11 5 -1 -10 -6 }}
 
Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 696.683
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.978
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }}


Badness: 0.024535
Badness (Sintel): 1.05


==== 19-limit ====
Scales: [[mohaha7]], [[mohaha10]]
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56
== Mohamaq ==
 
Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as {{nowrap| 17c & 24 }}; its ploidacot is dicot, the same as mohajira.  
Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~3/2 = 696.996
* POTE: ~2 = 1200.000, ~3/2 = 697.068
 
Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
 
Badness: 0.021098
 
== Sharptone ==
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 21/20, 28/27
[[Comma list]]: 81/80, 392/375


{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}
{{Mapping|legend=1| 1 1 0 -1 | 0 2 8 13 }}


{{Multival|legend=1| 1 4 3 4 2 -4 }}
: mapping generators: ~2, ~25/21


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.732
* [[WE]]: ~2 = 1199.0661{{c}}, ~25/21 = 350.3127{{c}}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 700.140
: [[error map]]: {{val| -0.934 -2.264 +16.188 -13.827 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}}
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }}


{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}
 
[[Badness]] (Sintel): 1.97


[[Badness]]: 0.024848
Scales: [[mohaha7]], [[mohaha10]]


=== Meanertone ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 21/20, 28/27, 33/32
Comma list: 56/55, 77/75, 243/242


Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}
Mapping: {{mapping| 1 1 0 -1 2 | 0 2 8 13 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000, ~3/2 = 702.730
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}}
* POTE: ~2 = 1200.000, ~3/2 = 696.615
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7d, 12de }}
{{Optimal ET sequence|legend=0| 7d, 17c, 24 }}


Badness: 0.025167
Badness (Sintel): 1.20


== Supermean ==
Scales: [[mohaha7]], [[mohaha10]]
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 672/625
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


{{Mapping|legend=1|  1 0 -4 -21 | 0 1 4 15 }}
Comma list: 56/55, 66/65, 77/75, 243/242


[[Optimal tuning]]s:  
Mapping: {{mapping| 1 1 0 -1 2 4 | 0 2 8 13 5 -1 }}
* [[CTE]]: ~2 = 1200.000, ~3/2 = 703.811
* [[POTE]]: ~2 = 1200.000, ~3/2 = 704.889


{{Optimal ET sequence|legend=1| 5d, 12d, 17c, 29c }}
Optimal tunings:
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}}


[[Badness]]: 0.134204
{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }}


=== 11-limit ===
Badness (Sintel): 1.19
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 132/125
Scales: [[mohaha7]], [[mohaha10]]


Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}
== Liese ==
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>


Optimal tunings:
Liese splits the [[3/1|perfect twelfth]] into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as {{nowrap| 17c & 19 }}; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  
* CTE: ~2 = 1200.000, ~3/2 = 704.016
* POTE: ~2 = 1200.000, ~3/2 = 705.096


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
[[Subgroup]]: 2.3.5.7


Badness: 0.063262
[[Comma list]]: 81/80, 686/675


=== 13-limit ===
{{Mapping|legend=1| 1 0 -4 -3 | 0 3 12 11 }}
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 56/55, 66/65, 81/80
: mapping generators: ~2, ~10/7


Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1201.5548{{c}}, ~10/7 = 633.2251{{c}}
: [[error map]]: {{val| +1.555 -2.280 +6.168 -8.015 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}}
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }}


Optimal tunings:  
[[Minimax tuning]]:  
* CTE: ~2 = 1200.000, ~3/2 = 704.121
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
* POTE: ~2 = 1200.000, ~3/2 = 705.094
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 2/3 0 11/12 0 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.


Badness: 0.040324
{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}


== Mohajira ==
[[Badness]] (Sintel): 1.18
{{Main| Mohajira }}


Mohajira can be viewed as derived from mohaha which maps the interval one quarter tone flat of 16/9 to 7/4, although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. [[31edo]] makes for an excellent (7-limit) mohajira tuning, with generator 9\31.  
=== Liesel ===
Subgroup: 2.3.5.7.11


[[Subgroup]]: 2.3.5.7
Comma list: 56/55, 81/80, 540/539


[[Comma list]]: 81/80, 6144/6125
Mapping: {{mapping| 1 0 -4 -3 4 | 0 3 12 11 -1 }}


{{Mapping|legend=1| 1 1 0 6 | 0 2 8 -11 }}
Optimal tunings:
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}}


: mapping generators: ~2, ~128/105
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


{{Multival|legend=1| 2 8 -11 8 -23 -48 }}
Badness (Sintel): 1.35


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 348.415
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Minimax tuning]]:
Comma list: 56/55, 78/77, 81/80, 91/90
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 6 0 -11/8 0 }}
: [[eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5


[[Tuning ranges]]:
Mapping: {{mapping| 1 0 -4 -3 4 0 | 0 3 12 11 -1 7 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]


[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.
Optimal tunings:  
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}}


{{Optimal ET sequence|legend=1| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


[[Badness]]: 0.055714
Badness (Sintel): 1.13


Scales: [[mohaha7]], [[mohaha10]]
=== Elisa ===
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 121/120, 176/175
Comma list: 77/75, 81/80, 99/98


Mapping: {{mapping| 1 1 0 6 2 | 0 2 8 -11 5 }}
Mapping: {{mapping| 1 0 -4 -3 -5 | 0 3 12 11 16 }}


Wedgie: {{multival| 2 8 -11 5 8 -23 1 -48 -16 52 }}
Optimal tunings:  
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}}


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 348.477
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}


Minimax tuning:
Badness (Sintel): 1.37
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: projection map: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.5


Tuning ranges:
==== 13-limit ====
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
Subgroup: 2.3.5.7.11.13
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31 }}
Comma list: 66/65, 77/75, 81/80, 99/98


Badness: 0.026064
Mapping: {{mapping| 1 0 -4 -3 -5 0 | 0 3 12 11 16 7 }}


Scales: [[mohaha7]], [[mohaha10]]
Optimal tunings:  
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}}


=== 13-limit ===
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 81/80, 105/104, 121/120
Badness (Sintel): 1.11


Mapping: {{mapping| 1 1 0 6 2 4 | 0 2 8 -11 5 -1 }}
=== Lisa ===
Subgroup: 2.3.5.7.11


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 348.558
Comma list: 45/44, 81/80, 343/330


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31 }}
Mapping: {{mapping| 1 0 -4 -3 -6 | 0 3 12 11 18 }}


Badness: 0.023388
Optimal tunings:  
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}}


Scales: [[mohaha7]], [[mohaha10]]
{{Optimal ET sequence|legend=0| 17cee, 19 }}


=== 17-limit ===
Badness (Sintel): 1.81
Subgroup: 2.3.5.7.11.13.17


Comma list: 66/65, 81/80, 105/104, 121/120, 154/153
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: {{mapping| 1 1 0 6 2 4 7 | 0 2 8 -11 5 -1 -10 }}
Comma list: 45/44, 81/80, 91/88, 147/143


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 348.736
Mapping: {{mapping| 1 0 -4 -3 -6 0 | 0 3 12 11 18 7 }}


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31, 86ef }}
Optimal tunings:  
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}}


Badness: 0.020576
{{Optimal ET sequence|legend=0| 17cee, 19 }}


Scales: [[mohaha7]], [[mohaha10]]
Badness (Sintel): 1.49


=== 19-limit ===
== Superpine ==
Subgroup: 2.3.5.7.11.13.17.19
{{See also| No-sevens subgroup temperaments #Superpine }}


Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. It may be described as {{nowrap| 36 & 43 }}; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] – harmonics other than 3 all require the 15-tone mos ([[7L 8s]]) to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.


Mapping: {{mapping| 1 1 0 6 2 4 7 6 | 0 2 8 -11 5 -1 -10 -6 }}
[[Subgroup]]: 2.3.5.7


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 348.810
[[Comma list]]: 81/80, 1119744/1071875


Optimal ET sequence: {{Optimal ET sequence| 7, 24, 31, 55, 86efh }}
{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}


Badness: 0.017302
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.3652{{c}}, ~35/32 = 167.1615{{c}}
: [[error map]]: {{val| -0.635 -4.709 +5.209 +3.639 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}


Scales: [[mohaha7]], [[mohaha10]]
{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}


== Mohamaq ==
[[Badness]] (Sintel): 3.46
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 392/375
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Mapping|legend=1| 1 1 0 -1 | 0 2 8 13 }}
Comma list: 81/80, 176/175, 864/847


: mapping generators: ~2, ~25/21
Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~25/21 = 350.586
Optimal tunings:
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}}


{{Optimal ET sequence|legend=1| 7d, 17c, 24, 65cc, 89ccd }}
{{Optimal ET sequence|legend=0| 7, 36, 43 }}


[[Badness]]: 0.077734
Badness (Sintel): 1.90


Scales: [[mohaha7]], [[mohaha10]]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


=== 11-limit ===
Comma list: 78/77, 81/80, 144/143, 176/175
Subgroup: 2.3.5.7.11


Comma list: 56/55, 77/75, 243/242
Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}


Mapping: {{mapping| 1 1 0 -1 2 | 0 2 8 13 5 }}
Optimal tunings:  
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}}


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 350.565
{{Optimal ET sequence|legend=0| 7, 36, 43 }}


Optimal ET sequence: {{Optimal ET sequence| 7d, 17c, 24, 65cc, 89ccd }}
Badness (Sintel): 1.52


Badness: 0.036207
== Lithium ==
Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.


Scales: [[mohaha7]], [[mohaha10]]
[[Subgroup]]: 2.3.5.7


=== 13-limit ===
[[Comma list]]: 81/80, 3125/3087
Subgroup: 2.3.5.7.11.13


Comma list: 56/55, 66/65, 77/75, 243/242
{{Mapping|legend=1| 3 0 -12 -20 | 0 1 4 6 }}


Mapping: {{mapping| 1 1 0 -1 2 4 | 0 2 8 13 5 -1 }}
: mapping generators: ~56/45, ~3


Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 350.745
[[Optimal tuning]]s:
* [[WE]]: ~56/45 = 400.6744{{c}}, ~3/2 = 695.8474{{c}} {~15/14 = 105.5015{{c}})
: [[error map]]: {{val| +2.023 -4.084 -2.924 +4.910 }}
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}})
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}


Optimal ET sequence: {{Optimal ET sequence| 7d, 17c, 24, 41c, 65cc }}
{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}


Badness: 0.028738
[[Badness]] (Sintel): 1.75


Scales: [[mohaha7]], [[mohaha10]]
== Squares ==
{{Main| Squares }}


== Liese ==
Squares splits the [[6/1|6th harmonic]] into four subminor sixths of [[11/7]]~[[14/9]] (or splits a [[8/3|perfect eleventh]] into four supermajor thirds of [[9/7]]~[[14/11]]), and uses it for a generator. It may be described as {{nowrap| 14c & 17c }}; its ploidacot is beta-tetracot. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>
 
Liese splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 686/675
[[Comma list]]: 81/80, 2401/2400
 
{{Mapping|legend=1| 1 0 -4 -3 | 0 3 12 11 }}


: mapping generators: ~2, ~10/7
{{Mapping|legend=1| 1 -1 -8 -3 | 0 4 16 9 }}


{{Multival|legend=1| 3 12 11 12 9 -8 }}
: mapping generators: ~2, ~14/9


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~10/7 = 632.406
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1201.2488{{c}}, ~14/9 = 774.8640{{c}}
: [[error map]]: {{val| +1.249 -3.748 +1.520 +1.204 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}}
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 2/3 0 11/12 0 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 3/2 0 9/16 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.
[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.


{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}
{{Optimal ET sequence|legend=1| 14c, 17c, 31, 169b, 200b }}


[[Badness]]: 0.046706
[[Badness]] (Sintel): 1.16


=== Liesel ===
Scales: [[skwares8]], [[skwares11]], [[skwares14]]
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 540/539
Comma list: 81/80, 99/98, 121/120


Mapping: {{mapping| 1 0 -4 -3 4 | 0 3 12 11 -1 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 | 0 4 16 9 10 }}


Wedgie: {{multival| 3 12 11 -1 12 9 -12 -8 -44 -41 }}
Optimal tunings:
 
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}}
Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 633.073
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19, 36, 91cee }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }}


Badness: 0.040721
Badness (Sintel): 0.715


==== 13-limit ====
==== 13-limit ====
Liesel is a very natural 13-limit tuning, given the generator is so near 13/9.
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 56/55, 78/77, 81/80, 91/90
Comma list: 66/65, 81/80, 99/98, 121/120


Mapping: {{mapping| 1 0 -4 -3 4 0 | 0 3 12 11 -1 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 5 | 0 4 16 9 10 -2 }}


Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 633.042
Optimal tunings:
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19, 36, 91ceef }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }}


Badness: 0.027304
Badness (Sintel): 1.05


=== Elisa ===
==== Squad ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 77/75, 81/80, 99/98
Comma list: 78/77, 81/80, 91/90, 99/98


Mapping: {{mapping| 1 0 -4 -3 -5 | 0 3 12 11 16 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -6 | 0 4 16 9 10 15 }}


Wedgie: {{multival| 3 12 11 16 12 9 15 -8 -4 7 }}
Optimal tunings:  
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}}


Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 633.061
{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19e, 36e }}
Badness (Sintel): 1.11


Badness: 0.041592
==== Agora ====
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 77/75, 81/80, 99/98
Comma list: 81/80, 99/98, 105/104, 121/120


Mapping: {{mapping| 1 0 -4 -3 -5 0 | 0 3 12 11 16 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 | 0 4 16 9 10 29 }}


Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 632.991
Optimal tunings:
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17c, 19e, 36e }}
{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }}


Badness: 0.026922
Badness (Sintel): 1.01


=== Lisa ===
===== 17-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 81/80, 343/330
Comma list: 81/80, 99/98, 105/104, 120/119, 121/119


Mapping: {{mapping| 1 0 -4 -3 -6 | 0 3 12 11 18 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 | 0 4 16 9 10 29 11 }}


Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 631.370
Optimal tunings:
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}}


Optimal ET sequence: {{Optimal ET sequence| 17cee, 19 }}
{{Optimal ET sequence|legend=0| 14cf, 31 }}


Badness: 0.054829
Badness (Sintel): 1.15


==== 13-limit ====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 81/80, 91/88, 147/143
Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119


Mapping: {{mapping| 1 0 -4 -3 -6 0 | 0 3 12 11 18 7 }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 -8 | 0 4 16 9 10 29 11 19 }}


Optimal tuning (POTE): ~2 = 1200.000, ~10/7 = 631.221
Optimal tunings:
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}}
 
{{Optimal ET sequence|legend=0| 14cf, 31 }}
 
Badness (Sintel): 1.15
 
=== Cuboctahedra ===
Subgroup: 2.3.5.7.11


Optimal ET sequence: {{Optimal ET sequence| 17cee, 19 }}
Comma list: 81/80, 385/384, 1375/1372


Badness: 0.036144
Mapping: {{mapping| 1 -1 -8 -3 17 | 0 4 16 9 -21 }}


== Superpine ==
Optimal tunings:
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]]–harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}}
 
{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }}
 
Badness (Sintel): 1.88
 
== Jerome ==
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. It may be described as {{nowrap| 17c & 26 }}; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 1119744/1071875
[[Comma list]]: 81/80, 17280/16807
 
{{Mapping|legend=1| 1 1 0 2 | 0 5 20 7 }}


{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}
: mapping generators: ~2, ~54/49


[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~35/32 = 167.279
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1200.1640{{c}}, ~54/49 = 139.3624{{c}}
: [[error map]]: {{val| +0.164 -4.979 +0.934 +7.039 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}}
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }}


{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}
{{Optimal ET sequence|legend=1| 17c, 26, 43 }}


[[Badness]]: 0.137
[[Badness]] (Sintel): 2.75


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 176/175, 864/847
Comma list: 81/80, 99/98, 864/847


Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}
Mapping: {{mapping| 1 1 0 2 3 | 0 5 20 7 4 }}


Optimal tuning (CTE): ~2 = 1200.000, ~11/10 = 167.407
Optimal tunings:
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


Badness: 0.0576
Badness (Sintel): 1.58


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 144/143, 176/175
Comma list: 78/77, 81/80, 99/98, 144/143


Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}
Mapping: {{mapping| 1 1 0 2 3 3 | 0 5 20 7 4 6 }}
 
Optimal tunings:
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}}
 
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


Optimal tuning (CTE): ~2 = 1200.000, ~11/10 = 167.427
Badness (Sintel): 1.21


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.0368
Comma list: 78/77, 81/80, 99/98, 144/143, 189/187


== Lithium ==
Mapping: {{mapping| 1 1 0 2 3 3 2 | 0 5 20 7 4 6 18 }}
Lithium is named after the 3rd element for having a 3rd-octave period, and also for lithium's molar mass of 6.9 g/mol since 69edo supports it. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.
 
Optimal tunings:
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}}


[[Subgroup]]: 2.3.5.7
{{Optimal ET sequence|legend=0| 17cg, 26, 43 }}


[[Comma list]]: 81/80, 3125/3087
Badness (Sintel): 1.06


{{Mapping|legend=1| 3 0 -12 -20 | 0 1 4 6 }}
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


: mapping generators: ~56/45, ~3
Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143


[[Optimal tuning]] ([[CTE]]): ~56/45 = 400.000, ~3/2 = 695.827
Mapping: {{mapping| 1 1 0 2 3 3 2 1 | 0 5 20 7 4 6 18 28 }}


{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
Optimal tunings:
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}}


[[Badness]]: 0.0692
{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }}


== Squares ==
Badness (Sintel): 1.11
{{Main| Squares }}


Squares splits the interval of an eleventh, or 8/3, into four supermajor third ([[9/7]]) intervals, and uses it for a generator. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
== Meantritone ==
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name ''meantritone'' is a portmanteau of ''meantone'' and ''tritone'', the latter is a generator of this temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 2401/2400
[[Comma list]]: 81/80, 16875/16807


{{Mapping|legend=1| 1 3 8 6 | 0 -4 -16 -9 }}
{{Mapping|legend=1| 1 -1 -8 -7 | 0 5 20 19 }}


: mapping generators: ~2, ~9/7
: mapping generators: ~2, ~10/7


{{Multival|legend=1| 4 16 9 16 3 -24 }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1201.3832{{c}}, ~10/7 = 619.9478{{c}}
: [[error map]]: {{val| +1.383 -3.599 +1.576 +0.499 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}}
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 425.942
{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}


[[Minimax tuning]]:
[[Badness]] (Sintel): 2.08
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 3/2 0 9/16 0 }}
: [[eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
 
[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.
 
{{Optimal ET sequence|legend=1| 14c, 17c, 31 }}
 
[[Badness]]: 0.045993
 
Scales: [[skwares8]], [[skwares11]], [[skwares14]]


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 121/120
Comma list: 81/80, 99/98, 2541/2500


Mapping: {{mapping| 1 3 8 6 7 | 0 -4 -16 -9 -10 }}
Mapping: {{mapping| 1 -1 -8 -7 -11 | 0 5 20 19 28 }}


Wedgie: {{multival| 4 16 9 10 16 3 2 -24 -32 -3 }}
Optimal tunings:  
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}}


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 425.957
{{Optimal ET sequence|legend=0| 29cde, 31 }}


Optimal ET sequence: {{Optimal ET sequence| 14c, 17c, 31 }}
Badness (Sintel): 1.42


Badness: 0.021636
== Injera ==
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as {{nowrap| 12 & 26 }}; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.


==== 13-limit ====
[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 81/80, 99/98, 121/120
[[Subgroup]]: 2.3.5.7


Mapping: {{mapping| 1 3 8 6 7 3 | 0 -4 -16 -9 -10 2 }}
[[Comma list]]: 50/49, 81/80


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 425.550
{{Mapping|legend=1| 2 0 -8 -7 | 0 1 4 4 }}


Optimal ET sequence: {{Optimal ET sequence| 14c, 17c, 31, 79cf }}
: mapping generators: ~7/5, ~3


Badness: 0.025514
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 600.6662{{c}}, ~3/2 = 695.1463{{c}} (~21/20 = 94.4801{{c}})
: [[error map]]: {{val| +1.332 -5.476 -5.729 +12.425 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}})
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }}


==== Squad ====
[[Tuning ranges]]:
Subgroup: 2.3.5.7.11.13
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Comma list: 78/77, 81/80, 91/90, 99/98
{{Optimal ET sequence|legend=1| 12, 26, 38 }}


Mapping: {{mapping| 1 3 8 6 7 9 | 0 -4 -16 -9 -10 -15 }}
[[Badness]] (Sintel): 0.788


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 425.7516
; Music
* [https://web.archive.org/web/20201127013520/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 ''Two Pairs of Socks''] by [[Igliashon Jones]] – in [[26edo]] tuning
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 45/44, 50/49, 81/80


Optimal ET sequence: {{Optimal ET sequence| 14cf, 17c, 31f }}
Mapping: {{mapping| 2 0 -8 -7 -12 | 0 1 4 4 6 }}


Badness: 0.026877
Optimal tunings:  
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}})


==== Agora ====
Tuning ranges:
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]
 
{{Optimal ET sequence|legend=0| 12, 26 }}
 
Badness (Sintel): 0.764
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 99/98, 105/104, 121/120
Comma list: 45/44, 50/49, 78/77, 81/80
 
Mapping: {{mapping| 2 0 -8 -7 -12 -21 | 0 1 4 4 6 9 }}


Mapping: {{mapping| 1 3 8 6 7 14 | 0 -4 -16 -9 -10 -29 }}
Optimal tunings:  
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}})


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 426.276
Tuning ranges:
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31, 45ef, 76e }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.024522
Badness (Sintel): 0.891


===== 17-limit =====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 99/98, 105/104, 120/119, 121/119
Comma list: 45/44, 50/49, 78/77, 81/80, 85/84


Mapping: {{mapping| 1 3 8 6 7 14 8 | 0 -4 -16 -9 -10 -29 -11 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 | 0 1 4 4 6 9 1 }}


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 426.187
Optimal tunings:
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}})


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31, 76e }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.022573
Badness (Sintel): 0.935


===== 19-limit =====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119
Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84


Mapping: {{mapping| 1 3 8 6 7 14 8 11 | 0 -4 -16 -9 -10 -29 -11 -19 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 -1 | 0 1 4 4 6 9 1 3 }}


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 426.225
Optimal tunings:
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}})


Optimal ET sequence: {{Optimal ET sequence| 14cf, 31, 76e }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}


Badness: 0.018839
Badness (Sintel): 0.920


=== Cuboctahedra ===
==== Enjera ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 385/384, 1375/1372
Comma list: 27/26, 40/39, 45/44, 50/49


Mapping: {{mapping| 1 3 8 6 -4 | 0 -4 -16 -9 21 }}
Mapping: {{mapping| 2 0 -8 -7 -12 -2 | 0 1 4 4 6 3 }}


{{Multival|legend=1| 4 16 9 -21 16 3 -47 -24 -104 -90 }}
Optimal tunings:
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}})


Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 425.993
{{Optimal ET sequence|legend=0| 10cdeef, 12f }}


Optimal ET sequence: {{Optimal ET sequence| 14ce, 17ce, 31, 107b, 138b, 169be, 200be }}
Badness (Sintel): 1.10


Badness: 0.056826
=== Injerous ===
Subgroup: 2.3.5.7.11


== Jerome ==
Comma list: 33/32, 50/49, 55/54
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 2 0 -8 -7 10 | 0 1 4 4 -1 }}


[[Comma list]]: 81/80, 17280/16807
Optimal tunings:  
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}})


{{Mapping|legend=1| 1 1 0 2 | 0 5 20 7 }}
{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }}


: mapping generators: ~2, ~54/49
Badness (Sintel): 1.28


{{Multival|legend=1| 5 20 7 20 -3 -40 }}
=== Lahoh ===
Subgroup: 2.3.5.7.11


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~54/49 = 139.343
Comma list: 50/49, 56/55, 81/77


{{Optimal ET sequence|legend=1| 17c, 26, 43, 69, 112bd }}
Mapping: {{mapping| 2 0 -8 -7 7 | 0 1 4 4 0 }}


[[Badness]]: 0.108656
Optimal tunings:  
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}})


=== 11-limit ===
{{Optimal ET sequence|legend=0| 10cd, 12 }}
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 864/847
Badness (Sintel): 1.42


Mapping: {{mapping| 1 1 0 2 3 | 0 5 20 7 4 }}
=== Teff ===
{{Main| Teff }}
 
Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot.
 
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 81/80, 864/847
 
Mapping: {{mapping| 2 1 -4 -3 8 | 0 2 8 8 -1 }}


Wedgie: {{multival| 5 20 7 4 20 -3 -11 -40 -60 -13 }}
: mapping generators: ~7/5, ~16/11


Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 139.428
Optimal tunings:
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17c, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


Badness: 0.047914
Badness (Sintel): 2.34


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 99/98, 144/143
Comma list: 50/49, 78/77, 81/80, 144/143


Mapping: {{mapping| 1 1 0 2 3 3 | 0 5 20 7 4 6 }}
Mapping: {{mapping| 2 1 -4 -3 8 2 | 0 2 8 8 -1 5 }}


Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 139.387
Optimal tunings:
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17c, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


Badness: 0.029285
Badness (Sintel): 1.65


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 78/77, 81/80, 99/98, 144/143, 189/187
Comma list: 50/49, 78/77, 81/80, 85/84, 144/143


Mapping: {{mapping| 1 1 0 2 3 3 2 | 0 5 20 7 4 6 18 }}
Mapping: {{mapping| 2 1 -4 -3 8 2 6 | 0 2 8 8 -1 5 2 }}


Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 139.362
Optimal tunings:
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17cg, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}


Badness: 0.020878
Badness (Sintel): 1.50


=== 19-limit ===
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143
Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143


Mapping: {{mapping| 1 1 0 2 3 3 2 1 | 0 5 20 7 4 6 18 28 }}
Mapping: {{mapping| 2 1 -4 -3 8 2 6 2 | 0 2 8 8 -1 5 2 6 }}


Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 139.313
Optimal tunings:
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}})


Optimal ET sequence: {{Optimal ET sequence| 17cgh, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}


Badness: 0.018229
Badness (Sintel): 1.41


== Meantritone ==
== Pombe ==
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, three septimal tritones equals ~30/11 (an octave plus [[15/11]]-wide super-fourth) and five of them equals ~[[16/3]] (double-compound fourth). The name "meantritone" is a portmanteau of meantone and tritone, the latter is a generator of this temperament.
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 16875/16807
[[Comma list]]: 81/80, 300125/294912


{{Mapping|legend=1| 1 4 12 12 | 0 -5 -20 -19 }}
{{Mapping|legend=1| 2 1 -4 11 | 0 2 8 -5 }}


{{Multival|legend=1| 5 20 19 20 16 -12 }}
: mapping generators: ~735/512, ~35/24


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~7/5 = 580.766
[[Optimal tuning]]s:
* [[WE]]: ~735/512 = 601.0652{{c}}, ~35/24 = 648.9295{{c}} (~36/35 = 47.8642{{c}})
: [[error map]]: {{val| +2.130 -3.031 +0.861 -1.756 }}
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}})
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}


{{Optimal ET sequence|legend=1| 2cd, 29cd, 31 }}
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}


[[Badness]]: 0.082239
[[Badness]] (Sintel): 2.94


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 2541/2500
Comma list: 81/80, 245/242, 385/384


Mapping: {{mapping| 1 4 12 12 17 | 0 -5 -20 -19 -28 }}
Mapping: {{mapping| 2 1 -4 11 8 | 0 2 8 -5 -1 }}


Optimal tuning (POTE): ~2 = 1200.000, ~7/5 = 580.647
Optimal tunings:
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}})


Optimal ET sequence: {{Optimal ET sequence| 2cde, 29cde, 31 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


Badness: 0.042869
Badness (Sintel): 1.72


== Injera ==
=== 13-limit ===
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.
Subgroup: 2.3.5.7.11.13


[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
Comma list: 81/80, 105/104, 144/143, 245/242


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 2 1 -4 11 8 2 | 0 2 8 -5 -1 5 }}


[[Comma list]]: 50/49, 81/80
Optimal tunings:  
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


{{Mapping|legend=1| 2 0 -8 -7 | 0 1 4 4 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


: mapping generators: ~7/5, ~3
Badness (Sintel): 1.28


{{Multival|legend=1| 2 8 8 8 7 -4 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


[[Optimal tuning]] ([[POTE]]): ~7/5 = 600.000, ~3/2 = 694.375
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272


[[Tuning ranges]]:  
Mapping: {{mapping| 2 1 -4 11 8 2 6 | 0 2 8 -5 -1 5 2 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 12, 26, 38, 102bcd, 140bccd, 178bbccdd }}
Optimal tunings:
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


[[Badness]]: 0.031130
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


; Music
Badness (Sintel): 1.08
* [https://web.archive.org/web/20201127013520/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 ''Two Pairs of Socks''] by [[Igliashon Jones]] – in [[26edo]] tuning


=== 11-limit ===
=== 19-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 50/49, 81/80
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209


Mapping: {{mapping| 2 0 -8 -7 -12 | 0 1 4 4 6 }}
Mapping: {{mapping| 2 1 -4 11 8 2 6 2 | 0 2 8 -5 -1 5 2 6 }}


{{Multival|legend=1| 2 8 8 12 8 7 12 -4 0 6 }}
Optimal tunings:
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}})


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 692.840
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


Tuning ranges:
Badness (Sintel): 1.01
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 12, 14c, 26, 90bce, 116bcce }}
== Orphic ==
Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot.


Badness: 0.023124
[[Subgroup]]: 2.3.5.7


==== 13-limit ====
[[Comma list]]: 81/80, 5898240/5764801
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 78/77, 81/80
{{Mapping|legend=1| 2 1 -4 4 | 0 4 16 3 }}


Mapping: {{mapping| 2 0 -8 -7 -12 -21 | 0 1 4 4 6 9 }}
: mapping generators: ~2401/1728, ~343/288


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 692.673
[[Optimal tuning]]s:
* [[WE]]: ~2401/1728 = 600.1767{{c}}, ~343/288 = 324.3015{{c}} (~7/6 = 275.8751{{c}})
: [[error map]]: {{val| +0.353 -4.572 +1.804 +4.785 }}
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}})
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }}


Tuning ranges:
{{Optimal ET sequence|legend=1| 26, 48c, 74 }}
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26, 38e }}
[[Badness]] (Sintel): 6.55


Badness: 0.021565
=== 11-limit ===
Subgroup: 2.3.5.7.11


===== 17-limit =====
Comma list: 81/80, 99/98, 73728/73205
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 50/49, 78/77, 81/80, 85/84
Mapping: {{mapping| 2 1 -4 4 8 | 0 4 16 3 -2 }}


Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 | 0 1 4 4 6 9 1 }}
Optimal tunings:  
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}})
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}})


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 692.487
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26 }}
Badness (Sintel): 3.36


Badness: 0.018358
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


===== 19-limit =====
Comma list: 81/80, 99/98, 144/143, 2200/2197
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84
Mapping: {{mapping| 2 1 -4 4 8 2 | 0 4 16 3 -2 10 }}


Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 -1 | 0 1 4 4 6 9 1 3 }}
Optimal tunings:  
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}})
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}})


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 692.299
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


Optimal ET sequence: {{Optimal ET sequence| 12f, 14cf, 26 }}
Badness (Sintel): 2.21


Badness: 0.015118
== Cloudtone ==
The cloudtone temperament tempers out the [[cloudy comma]], 16807/16384 and the [[syntonic comma]], 81/80 in the 7-limit. It may be described as {{nowrap| 5 & 50 }}; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.


==== Enjera ====
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11.13


Comma list: 27/26, 40/39, 45/44, 50/49
[[Comma list]]: 81/80, 16807/16384


Mapping: {{mapping| 2 0 -8 -7 -12 -2 | 0 1 4 4 6 3 }}
{{Mapping|legend=1| 5 0 -20 14 | 0 1 4 0 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 694.121
: mapping generators: ~8/7, ~3


Optimal ET sequence: {{Optimal ET sequence| 12f, 14c, 26f, 38eff }}
[[Optimal tuning]]s:  
* [[WE]]: ~8/7 = 240.4267{{c}}, ~3/2 = 696.9566{{c}} (~49/48 = 24.3235{{c}})
: [[error map]]: {{val| +2.133 -2.865 +1.513 -2.852 }}
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}})
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }}


Badness: 0.026542
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}


=== Injerous ===
[[Badness]] (Sintel): 2.59
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 33/32, 50/49, 55/54
Comma list: 81/80, 385/384, 2401/2376


Mapping: {{mapping| 2 0 -8 -7 10 | 0 1 4 4 -1 }}
Mapping: {{mapping| 5 0 -20 14 41 | 0 1 4 0 -3 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 690.548
Optimal tunings:
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}})


Optimal ET sequence: {{Optimal ET sequence| 12e, 14c, 26e, 40cee }}
{{Optimal ET sequence|legend=0| 5, 45, 50 }}


Badness: 0.038577
Badness (Sintel): 2.33


=== Lahoh ===
=== 13-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 56/55, 81/77
Comma list: 81/80, 105/104, 144/143, 2401/2376


Mapping: {{mapping| 2 0 -8 -7 7 | 0 1 4 4 0 }}
Mapping: {{mapping| 5 0 -20 14 41 -21 | 0 1 4 0 -3 5 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~3/2 = 699.001
Optimal tunings:
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}})


Optimal ET sequence: {{Optimal ET sequence| 2cd, 10cd, 12 }}
{{Optimal ET sequence|legend=0| 5, 45f, 50 }}


Badness: 0.043062
Badness (Sintel): 2.02


=== Teff ===
== Subgroup extensions ==
{{Main| Teff }}
=== Stützel (2.3.5.19) ===
[[Subgroup]]: 2.3.5.19


Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in half in order to accommodate higher limit intervals, creating a half-octave quarter-tone temperament.
[[Comma list]]: 81/80, 96/95


Subgroup: 2.3.5.7.11
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}


Comma list: 50/49, 81/80, 864/847
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}


Mapping: {{mapping| 2 1 -4 -3 8 | 0 2 8 8 -1 }}
: mapping generators: ~2, ~3


: mapping generators: ~7/5, ~16/11
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.5513{{c}}, ~3/2 = 697.6058{{c}}
: [[error map]]: {{val| -0.448 -4.798 +4.110 +6.977 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 697.8222{{c}}
: error map: {{val| 0.000 -4.133 +4.975 +9.020 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~11/8 = 552.5303
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43, 98h }}


Optimal ET sequence: {{Optimal ET sequence| 24d, 26, 50d }}
[[Badness]] (Sintel): 0.324


Badness: 0.070689
=== Hypnotone ===
Hypnotone is no-sevens [[#Flattone|flattone]].


==== 13-limit ====
[[Subgroup]]: 2.3.5.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 78/77, 81/80, 144/143
[[Comma list]]: 45/44, 81/80


Mapping: {{mapping| 2 1 -4 -3 8 2 | 0 2 8 8 -1 5 }}
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}


Optimal tuning (POTE): ~7/5 = 600.000, ~11/8 = 552.5324
{{Mapping|legend=3| 1 0 -4 0 -6 | 0 1 4 0 6 }}


Optimal ET sequence: {{Optimal ET sequence| 24d, 26, 50d }}
: mapping generators: ~2, ~3


Badness: 0.040047
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1202.0621{{c}}, ~3/2 = 694.5448{{c}}
: [[error map]]: {{val| +2.062 -5.348 -8.135 +15.951 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.9085{{c}}
: error map: {{val| 0.000 -8.047 -10.680 +12.133 }}


==== 17-limit ====
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 50/49, 78/77, 81/80, 85/84, 144/143
[[Badness]] (Sintel): 0.326


Mapping: {{mapping| 2 1 -4 -3 8 2 6 | 0 2 8 8 -1 5 2 }}
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13


Optimal tuning (POTE): ~7/5 = 600.000, ~11/8 = 552.6558
Comma list: 45/44, 65/64, 81/80


Optimal ET sequence: {{Optimal ET sequence| 24d, 26 }}
Subgroup-val mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}


Badness: 0.029499
Gencom mapping: {{mapping| 1 0 -4 0 -6 10 | 0 1 4 0 6 -4 }}


==== 19-limit ====
Optimal tunings:
Subgroup: 2.3.5.7.11.13.17.19
* WE: ~2 = 1202.6916{{c}}, ~3/2 = 694.4181{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0870{{c}}


Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143
{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }}


Mapping: {{mapping| 2 1 -4 -3 8 2 6 2 | 0 2 8 8 -1 5 2 6 }}
Badness (Sintel): 0.561


Optimal tuning (POTE): ~7/5 = 600.000, ~11/8 = 552.6382
=== Dequarter ===
[[Subgroup]]: 2.3.5.11


Optimal ET sequence: {{Optimal ET sequence| 24d, 26 }}
[[Comma list]]: 33/32, 55/54


Badness: 0.023133
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}


== Pombe ==
{{Mapping|legend=3| 1 0 -4 0 5 | 0 1 4 0 -1 }}
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 300125/294912
 
{{Mapping|legend=1| 2 1 -4 11 | 0 2 8 -5 }}
 
: mapping generators: ~735/512, ~35/24
 
{{Multival|legend=1| 4 16 -10 16 -27 -68 }}
 
[[Optimal tuning]] ([[POTE]]): ~735/512 = 600.000, ~48/35 = 552.2206
 
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}
 
[[Badness]]: 0.116104
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 245/242, 385/384
 
Mapping: {{mapping| 2 1 -4 11 8 | 0 2 8 -5 -1 }}
 
Optimal tuning (POTE): ~99/70 = 600.000, ~11/8 = 552.0929
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.052099
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 245/242
 
Mapping: {{mapping| 2 1 -4 11 8 2 | 0 2 8 -5 -1 5 }}
 
Optimal tuning (POTE): ~99/70 = 600.000, ~11/8 = 552.1498
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.031039
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272
 
Mapping: {{mapping| 2 1 -4 11 8 2 6 | 0 2 8 -5 -1 5 2 }}
 
Optimal tuning (POTE): ~17/12 = 600.000, ~11/8 = 552.1579
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.021260
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209
 
Mapping: {{mapping| 2 1 -4 11 8 2 6 2 | 0 2 8 -5 -1 5 2 6 }}
 
Optimal tuning (POTE): ~17/12 = 600.000, ~11/8 = 552.1196
 
Optimal ET sequence: {{Optimal ET sequence| 24, 26, 50 }}
 
Badness: 0.016548
 
== Orphic ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 5898240/5764801
 
{{Mapping|legend=1| 2 5 12 7 | 0 -4 -16 -3 }}
 
: mapping generators: ~2401/1728, ~7/6
 
{{Multival|legend=1| 8 32 6 32 -13 -76 }}
 
[[Optimal tuning]] ([[POTE]]): ~2401/1728 = 600.000, ~7/6 = 275.794
 
{{Optimal ET sequence|legend=1| 26, 48c, 74, 174bd, 248bbd }}
 
[[Badness]]: 0.258825
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 99/98, 73728/73205
 
Mapping: {{mapping| 2 5 12 7 6 | 0 -4 -16 -3 2 }}
 
Optimal tuning (POTE): ~363/256 = 600.000, ~7/6 = 275.762
 
Optimal ET sequence: {{Optimal ET sequence| 26, 48c, 74, 248bbd, 322bbdd }}
 
Badness: 0.101499
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 99/98, 144/143, 2200/2197
 
Mapping: {{mapping| 2 5 12 7 6 12 | 0 -4 -16 -3 2 -10 }}
 
Optimal tuning (POTE): ~55/39 = 600.000, ~7/6 = 275.774
 
Optimal ET sequence: {{Optimal ET sequence| 26, 48c, 74, 174bd, 248bbd, 322bbdd }}
 
Badness: 0.053482
 
== Cloudtone ==
The cloudtone temperament (5 &amp; 50) tempers out the [[cloudy comma]], 16807/16384 and the [[81/80|syntonic comma]], 81/80 in the 7-limit. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 16807/16384
 
{{Mapping|legend=1| 5 0 -20 14 | 0 1 4 0 }}
 
: mapping generators: ~8/7, ~3
 
{{Multival|legend=1| 5 20 0 20 -14 -56 }}
 
[[Optimal tuning]] ([[POTE]]): ~8/7 = 240.000, ~3/2 = 695.720
 
{{Optimal ET sequence|legend=1| 5, 45, 50 }}
 
[[Badness]]: 0.102256
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 385/384, 2401/2376
 
Mapping: {{mapping| 5 0 -20 14 41 | 0 1 4 0 -3 }}
 
Optimal tuning (POTE): ~8/7 = 240.000, ~3/2 = 696.536
 
Optimal ET sequence: {{Optimal ET sequence| 5, 45, 50, 155bdd, 205bddd }}
 
Badness: 0.070378
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 2401/2376
 
Mapping: {{mapping| 5 0 -20 14 41 -21 | 0 1 4 0 -3 5 }}
 
Optimal tuning (POTE): ~8/7 = 240.000, ~3/2 = 696.162
 
Optimal ET sequence: {{Optimal ET sequence| 5, 45f, 50 }}
 
Badness: 0.048829
 
== Subgroup extensions ==
=== Stützel (2.3.5.19) ===
[[Subgroup]]: 2.3.5.19
 
[[Comma list]]: 81/80, 96/95
 
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}
 
: sval mapping generators: ~2, ~3
 
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}
 
: [[gencom]]: [2 3; 81/80 96/95]
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 697.867
 
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43 }}
 
[[Tp tuning #T2 tuning|RMS error]]: 1.378 cents
 
=== Hypnotone ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 45/44, 81/80


{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}
: mapping generators: ~2, ~3


: sval mapping generators: ~2, ~3
[[Optimal tuning]]s:
 
* [[WE]]: ~2 = 1206.5832{{c}}, ~3/2 = 695.8763{{c}}
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~3/2 = 694.700
: [[error map]]: {{val| +6.583 +0.504 -2.809 -20.862 }}
 
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.1206{{c}}
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
: error map: {{val| 0.000 -8.834 -13.831 -44.439 }}
 
[[Badness]]: 0.0104
 
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13
 
Comma list: 45/44, 65/64, 81/80
 
Sval mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}
 
: sval mapping generators: ~2, ~3
 
Optimal tuning (CTE): ~2/1 = 1\1, ~3/2 = 693.951
 
Optimal ET sequence: {{Optimal ET sequence| 7, 12, 19, 26, 45f }}
 
Badness: 0.0141
 
=== Dequarter ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 33/32, 55/54
 
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}
 
: sval mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.000, ~3/2 = 696.0387


{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}


[[Badness]]: 0.0145
[[Badness]] (Sintel): 0.451


==== Dreamtone ====
==== Dreamtone ====
Line 2,605: Line 2,479:
Comma list: 33/32, 55/54, 975/968
Comma list: 33/32, 55/54, 975/968


Sval mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}
Subgroup-val mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}


: sval mapping generators: ~2, ~3
Gencom mapping: {{mapping| 1 0 -4 0 5 21 | 0 1 4 0 -1 -11 }}
 
Optimal tunings:
* WE: ~2 = 1207.8248{{c}}, ~3/2 = 694.7806{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 690.1826{{c}}


Optimal tuning (CTE): ~2 = 1200.000, ~3/2 = 689.6993
{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }}


Optimal ET sequence: {{Optimal ET sequence| 7, 19eff, 26eff, 33ceeff, 40ceeff }}
Badness (Sintel): 1.40


Badness: 0.0353
== References ==
<references/>


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]