Template:LaTeX mapping operators/doc: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{dochead}}{{{{ROOTPAGENAME}} }}
{{dochead}}{{{{ROOTPAGENAME}} }}
This template allows LaTeX representations of [[monzo]]s, [[vals]], and monzo–val products by defining the operators in advance to avoid the need to manually enter brackets.
=== Usage ===
=== Usage ===
This template is mainly used to typeset [[Monzo]]s and [[val]]s, but multimonzos and multivals are also supported up to four dimensions.
This template is mainly used to typeset [[Monzo]]s and [[val]]s, but multimonzos and multivals are also supported up to four dimensions.
{| class="wikitable" style="text-align: center;"
 
|+ style="font-size: 105%; white-space: nowrap;" | Pre-defined LaTeX control sequences for interval vectors
{{Shortcut|texmap}}
 
{| class="wikitable"
|+ style="font-size: 105%;" | Pre-defined LaTeX control sequences for interval vectors
|-
|-
! rowspan="2" | Operator !! colspan="2" | Example !! rowspan="2" | Definition
! rowspan="2" | Operator
! colspan="2" | Example
! rowspan="2" | Definition
|-
|-
! You type !! You get
! You type
! You get
|-
|-
| <code>monzo</code> || <code>{{nowrap|\monzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\monzo{-4 & 4 & -1}</math> || [[Monzo]]
| <code>monzo</code>
| <code>{{nowrap|<nowiki>\monzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\monzo{-4 & 4 & -1}</math>
| [[Monzo]]
|-
|-
| <code>tmonzo</code> || <code>{{nowrap|\tmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tmonzo{-4 & 4 & -1}</math> || [[Tmonzos and tvals|Tempered monzo]]
| <code>tmonzo</code>
| <code>{{nowrap|<nowiki>\tmonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\tmonzo{-4 & 4 & -1}</math>
| Monzo (pipe variant)
|-
|-
| <code>bimonzo</code> || <code>{{nowrap|\bimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bimonzo{-4 & 4 & -1}</math> || Bimonzo
| <code>bimonzo</code>
| <code>{{nowrap|<nowiki>\bimonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\bimonzo{-4 & 4 & -1}</math>
| Bimonzo
|-
|-
| <code>bitmonzo</code> || <code>{{nowrap|\bitmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\bitmonzo{-4 & 4 & -1}</math> || Tempered bimonzo
| <code>bitmonzo</code>
| <code>{{nowrap|<nowiki>\bitmonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\bitmonzo{-4 & 4 & -1}</math>
| Bimonzo (pipe variant)
|-
|-
| <code>trimonzo</code> || <code>{{nowrap|\trimonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\trimonzo{-4 & 4 & -1}</math> || Trimonzo
| <code>trimonzo</code>
| <code>{{nowrap|<nowiki>\trimonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\trimonzo{-4 & 4 & -1}</math>
| Trimonzo
|-
|-
| <code>tritmonzo</code> || <code>{{nowrap|\tritmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\tritmonzo{-4 & 4 & -1}</math> || Tempered trimonzo
| <code>tritmonzo</code>
| <code>{{nowrap|<nowiki>\tritmonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\tritmonzo{-4 & 4 & -1}</math>
| Trimonzo (pipe variant)
|-
|-
| <code>quadmonzo</code> || <code>{{nowrap|\quadmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadmonzo{-4 & 4 & -1}</math> || Quadmonzo
| <code>quadmonzo</code>
| <code>{{nowrap|<nowiki>\quadmonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\quadmonzo{-4 & 4 & -1}</math>
| Quadmonzo
|-
|-
| <code>quadtmonzo</code> || <code>{{nowrap|\quadtmonzo{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\quadtmonzo{-4 & 4 & -1}</math> || Tempered quadmonzo
| <code>quadtmonzo</code>
| <code>{{nowrap|<nowiki>\quadtmonzo{-4 & 4 & -1}</nowiki>}}</code>
| <math>\quadtmonzo{-4 & 4 & -1}</math>
| Quadmonzo (pipe variant)
|-
|-
| <code>val</code> || <code>{{nowrap|\val{{(}}12 & 19 & 28{{)}}}}</code> || <math>\val{12 & 19 & 28}</math> || [[Val]]
| <code>val</code>
| <code>{{nowrap|<nowiki>\val{12 & 19 & 28}</nowiki>}}</code>
| <math>\val{12 & 19 & 28}</math>
| [[Val]]
|-
|-
| <code>tval</code> || <code>{{nowrap|\tval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tval{12 & 19 & 28}</math> || [[Tmonzos and tvals|Tempered val]]
| <code>tval</code>
| <code>{{nowrap|<nowiki>\tval{12 & 19 & 28}</nowiki>}}</code>
| <math>\tval{12 & 19 & 28}</math>
| Val (pipe variant)
|-
|-
| <code>bival</code> || <code>{{nowrap|\bival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bival{12 & 19 & 28}</math> || Bival
| <code>bival</code>
| <code>{{nowrap|<nowiki>\bival{12 & 19 & 28}</nowiki>}}</code>
| <math>\bival{12 & 19 & 28}</math>
| Bival
|-
|-
| <code>bitval</code> || <code>{{nowrap|\bitval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\bitval{12 & 19 & 28}</math> || Tempered bival
| <code>bitval</code>
| <code>{{nowrap|<nowiki>\bitval{12 & 19 & 28}</nowiki>}}</code>
| <math>\bitval{12 & 19 & 28}</math>
| Bival (pipe variant)
|-
|-
| <code>trival</code> || <code>{{nowrap|\trival{{(}}12 & 19 & 28{{)}}}}</code> || <math>\trival{12 & 19 & 28}</math> || Trival
| <code>trival</code>
| <code>{{nowrap|<nowiki>\trival{12 & 19 & 28}</nowiki>}}</code>
| <math>\trival{12 & 19 & 28}</math>
| Trival
|-
|-
| <code>tritval</code> || <code>{{nowrap|\tritval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\tritval{12 & 19 & 28}</math> || Tempered trival
| <code>tritval</code>
| <code>{{nowrap|<nowiki>\tritval{12 & 19 & 28}</nowiki>}}</code>
| <math>\tritval{12 & 19 & 28}</math>
| Trival (pipe variant)
|-
|-
| <code>quadval</code> || <code>{{nowrap|\quadval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadval{12 & 19 & 28}</math> || Quadval
| <code>quadval</code>
| <code>{{nowrap|<nowiki>\quadval{12 & 19 & 28}</nowiki>}}</code>
| <math>\quadval{12 & 19 & 28}</math>
| Quadval
|-
|-
| <code>quadtval</code> || <code>{{nowrap|\quadtval{{(}}12 & 19 & 28{{)}}}}</code> || <math>\quadtval{12 & 19 & 28}</math> || Tempered quadval
| <code>quadtval</code>
| <code>{{nowrap|<nowiki>\quadtval{12 & 19 & 28}</nowiki>}}</code>
| <math>\quadtval{12 & 19 & 28}</math>
| Quadval (pipe variant)
|-
|-
| <code>rket</code> || <code>{{nowrap|\rket{{(}}\val{{(}}1 & 2 & 3{{)}}\,\val{{(}}0 & -3 & -5{{)}}{{)}}}}</code> || <math>\rket{\val{1 & 2 & 3}\,\val{0 & -3 & -5}}</math> || [[Dave Keenan]] and [[Douglas Blumeyer]]'s<br />[[Extended_bra-ket_notation#Variant_including_curly_and_square_brackets|variation]] on [[extended bra-ket notation]]
| <code>rbra</code>
| <code>{{nowrap|<nowiki>\rbra{\monzo{1 & 2 & 3}</nowiki>}} & {{nowrap|<nowiki>\monzo{0 & -3 & -5}}</nowiki>}}</code>
| <math>\rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}}</math>
| rowspan="2" | [[Dave Keenan]] and [[Douglas Blumeyer]]'s<br />[[Extended bra-ket notation #Variant including curly and square brackets|variation]] on [[extended bra-ket notation]]
|-
|-
| <code>vmp</code> || <code>{{nowrap|\vmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math> || Dot product of Monzo and val
| <code>rket</code>
| <code>{{nowrap|<nowiki>\rket{\val{1 & 2 & 3}</nowiki>}} & {{nowrap|<nowiki>\val{0 & -3 & -5}}</nowiki>}}</code>
| <math>\rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}}</math>
|-
|-
| <code>wmp</code> || <code>{{nowrap|\wmp{{(}}12 & 19 & 28{{)}}{{(}}-4 & 4 & -1{{)}}}}</code> || <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math> || Dot product of bimonzo and [[wedgies and multivals|wedgie]]
| <code>vmp</code>
| <code>{{nowrap|<nowiki>\vmp{12 & 19 & 28}</nowiki>}}{{nowrap|<nowiki>{-4 & 4 & -1}</nowiki>}}</code>
| <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| Dot product of val and monzo
|-
|-
| <code>hs</code> || <code>\hs</code> || || Narrow whitespace
| <code>wmp</code>
| <code>{{nowrap|<nowiki>\wmp{12 & 19 & 28}</nowiki>}}{{nowrap|<nowiki>{-4 & 4 & -1}</nowiki>}}</code>
| <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| Dot product of bival and bimonzo
|}
|}
{{spaces note}}


=== See also ===
=== See also ===
* [[:Template:LaTeX preset characters]] &ndash; For predefining the bracket sequences.
* [[:Template:LaTeX preset characters]] – for predefining the bracket sequences.
* [[:Template:LaTeX operators]] &ndash; For typesetting more basic mathematical functions.
* [[:Template:LaTeX operators]] – for typesetting more basic mathematical functions.

Latest revision as of 18:55, 30 January 2025

[math]\displaystyle{ \def\hs{\hspace{-3px}} \def\lvsp{{}\mkern-5.5mu}{} \def\rvsp{{}\mkern-2.5mu}{} \def\llangle{\left\langle\lvsp\left\langle} \def\lllangle{\left\langle\lvsp\left\langle\lvsp\left\langle} \def\llllangle{\left\langle\lvsp\left\langle\lvsp\left\langle\lvsp\left\langle} \def\llbrack{\left[\left[} \def\lllbrack{\left[\left[\left[} \def\llllbrack{\left[\left[\left[\left[} \def\llvert{\left\vert\left\vert} \def\lllvert{\left\vert\left\vert\left\vert} \def\llllvert{\left\vert\left\vert\left\vert\left\vert} \def\rrangle{\right\rangle\rvsp\right\rangle} \def\rrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle} \def\rrrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle\rvsp\right\rangle} \def\rrbrack{\right]\right]} \def\rrrbrack{\right]\right]\right]} \def\rrrrbrack{\right]\right]\right]\right]} \def\rrvert{\right\vert\right\vert} \def\rrrvert{\right\vert\right\vert\right\vert} \def\rrrrvert{\right\vert\right\vert\right\vert\right\vert} }[/math][math]\displaystyle{ \def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]} \def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert} \def\bival#1{\llangle\begin{matrix}#1\end{matrix}\rrbrack} \def\bitval#1{\llangle\begin{matrix}#1\end{matrix}\rrvert} \def\trival#1{\lllangle\begin{matrix}#1\end{matrix}\rrrbrack} \def\tritval#1{\lllangle\begin{matrix}#1\end{matrix}\rrrvert} \def\quadval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrbrack} \def\quadtval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrvert} \def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle} \def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle} \def\bimonzo#1{\llbrack\begin{matrix}#1\end{matrix}\rrangle} \def\bitmonzo#1{\llvert\begin{matrix}#1\end{matrix}\rrangle} \def\trimonzo#1{\lllbrack\begin{matrix}#1\end{matrix}\rrrangle} \def\tritmonzo#1{\lllvert\begin{matrix}#1\end{matrix}\rrrangle} \def\quadmonzo#1{\llllbrack\begin{matrix}#1\end{matrix}\rrrrangle} \def\quadtmonzo#1{\llllvert\begin{matrix}#1\end{matrix}\rrrrangle} \def\rbra#1{\left\{\begin{matrix}#1\end{matrix}\right]} \def\rket#1{\left[\begin{matrix}#1\end{matrix}\right\}} \def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle} \def\wmp#1#2{\llangle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\rrangle} }[/math] This template allows LaTeX representations of monzos, vals, and monzo–val products by defining the operators in advance to avoid the need to manually enter brackets.

Usage

This template is mainly used to typeset Monzos and vals, but multimonzos and multivals are also supported up to four dimensions.

Note: You can use {{texmap}} as a shortcut.

Pre-defined LaTeX control sequences for interval vectors
Operator Example Definition
You type You get
monzo \monzo{-4 & 4 & -1} [math]\displaystyle{ \monzo{-4 & 4 & -1} }[/math] Monzo
tmonzo \tmonzo{-4 & 4 & -1} [math]\displaystyle{ \tmonzo{-4 & 4 & -1} }[/math] Monzo (pipe variant)
bimonzo \bimonzo{-4 & 4 & -1} [math]\displaystyle{ \bimonzo{-4 & 4 & -1} }[/math] Bimonzo
bitmonzo \bitmonzo{-4 & 4 & -1} [math]\displaystyle{ \bitmonzo{-4 & 4 & -1} }[/math] Bimonzo (pipe variant)
trimonzo \trimonzo{-4 & 4 & -1} [math]\displaystyle{ \trimonzo{-4 & 4 & -1} }[/math] Trimonzo
tritmonzo \tritmonzo{-4 & 4 & -1} [math]\displaystyle{ \tritmonzo{-4 & 4 & -1} }[/math] Trimonzo (pipe variant)
quadmonzo \quadmonzo{-4 & 4 & -1} [math]\displaystyle{ \quadmonzo{-4 & 4 & -1} }[/math] Quadmonzo
quadtmonzo \quadtmonzo{-4 & 4 & -1} [math]\displaystyle{ \quadtmonzo{-4 & 4 & -1} }[/math] Quadmonzo (pipe variant)
val \val{12 & 19 & 28} [math]\displaystyle{ \val{12 & 19 & 28} }[/math] Val
tval \tval{12 & 19 & 28} [math]\displaystyle{ \tval{12 & 19 & 28} }[/math] Val (pipe variant)
bival \bival{12 & 19 & 28} [math]\displaystyle{ \bival{12 & 19 & 28} }[/math] Bival
bitval \bitval{12 & 19 & 28} [math]\displaystyle{ \bitval{12 & 19 & 28} }[/math] Bival (pipe variant)
trival \trival{12 & 19 & 28} [math]\displaystyle{ \trival{12 & 19 & 28} }[/math] Trival
tritval \tritval{12 & 19 & 28} [math]\displaystyle{ \tritval{12 & 19 & 28} }[/math] Trival (pipe variant)
quadval \quadval{12 & 19 & 28} [math]\displaystyle{ \quadval{12 & 19 & 28} }[/math] Quadval
quadtval \quadtval{12 & 19 & 28} [math]\displaystyle{ \quadtval{12 & 19 & 28} }[/math] Quadval (pipe variant)
rbra \rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}} [math]\displaystyle{ \rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}} }[/math] Dave Keenan and Douglas Blumeyer's
variation on extended bra-ket notation
rket \rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}} [math]\displaystyle{ \rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}} }[/math]
vmp \vmp{12 & 19 & 28}{-4 & 4 & -1} [math]\displaystyle{ \vmp{12 & 19 & 28}{-4 & 4 & -1} }[/math] Dot product of val and monzo
wmp \wmp{12 & 19 & 28}{-4 & 4 & -1} [math]\displaystyle{ \wmp{12 & 19 & 28}{-4 & 4 & -1} }[/math] Dot product of bival and bimonzo

See also