Jubilismic clan: Difference between revisions

m Update linking
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.  
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.  


== Jubilic ==
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave gives ~[[7/4]].  
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.  


[[Subgroup]]: 2.5.7
[[Subgroup]]: 2.5.7
Line 12: Line 13:
: sval mapping generators: ~7/5, ~5
: sval mapping generators: ~7/5, ~5


[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}]
{{Mapping|legend=3| 2 0 0 1 | 0 0 1 1 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~5/4 = 380.840
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 599.6673{{c}}, ~5/4 = 380.6287{{c}} (~8/7 = 219.0386{{c}})
: [[error map]]: {{val| -0.665 -7.016 +10.139 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}


{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d, 82d, 104dd }}
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}
 
[[Badness]] (Sintel): 0.140


=== Overview to extensions ===
=== Overview to extensions ===
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].  
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].  


Diminished splits the ~7/5 period into a further two. Pajara slices the ~7/4 into two, with antikythera being every other step thereof. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five. Crepuscular slices the ~7/4 into seven.  
Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.  


Lemba, astrology, and doublewide are discussed below; others in the clan are  
Temperaments discussed elsewhere are:
* [[Diminished]] → [[Dimipent family #Diminished|Dimipent family]]
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Pajara]] → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Decimal]] → [[Dicot family #Decimal|Dicot family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Injera]] → [[Meantone family #Injera|Meantone family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* [[Octokaidecal]] → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* ''[[Injera]]'' (+81/80) → [[Meantone family #Injera|Meantone family]]
* [[Hedgehog]] → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Octokaidecal]]'' (+28/27) → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* [[Dubbla]] → [[Wesley family #Dubbla|Wesley family]]
* ''[[Bipelog]]'' (+135/128) → [[Mavila #Bipelog|Mavila family]]
* [[Bipelog]] → [[Pelogic family #Bipelog|Pelogic family]]
* ''[[Hexe]]'' (+128/125) → [[Augmented family #Hexe|Augmented family]]
* [[Crepuscular]] → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Hedgehog]]'' (+250/243) → [[Porcupine family #Hedgehog|Porcupine family]]
* [[Hexe]] → [[Augmented family #Hexe|Augmented family]]
* ''[[Crepuscular]]'' (+4375/4374) → [[Fifive family #Crepuscular|Fifive family]]
* [[Byhearted]] → [[Tetracot family #Byhearted|Tetracot family]]
* ''[[Byhearted]]'' (+19683/19208) → [[Tetracot family #Byhearted|Tetracot family]]


which are discussed elsewhere.
Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.


== Lemba ==
== Lemba ==
{{Main| Lemba }}
{{Main| Lemba }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''


Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth.  
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 51: Line 59:
: mapping generators: ~7/5, ~8/7
: mapping generators: ~7/5, ~8/7


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.4623{{c}}, ~8/7 = 232.6544{{c}}
: [[error map]]: {{val| +2.925 -1.067 -11.656 +7.294 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}


{{Optimal ET sequence|legend=1| 10, 16, 26, 62c }}
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}


[[Badness]]: 0.062208
[[Badness]] (Sintel): 1.57


=== 11-limit ===
=== 11-limit ===
Line 64: Line 76:
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974
Optimal tunings:
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}


{{Optimal ET sequence|legend=1| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


Badness: 0.041563
Badness (Sintel): 1.37


=== 13-limit ===
=== 13-limit ===
Line 77: Line 91:
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966
Optimal tunings:
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}


{{Optimal ET sequence|legend=1| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


Badness: 0.025477
Badness (Sintel): 1.05


== Astrology ==
== Astrology ==
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3.  
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 94: Line 110:
: mapping geenerators: ~7/5, ~5/4
: mapping geenerators: ~7/5, ~5/4


{{Multival|legend=1| 10 2 2 -20 -25 -1 }}
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 599.6999{{c}}, ~5/4 = 380.3881{{c}} (~8/7 = 219.3119{{c}})
: [[error map]]: {{val| -0.600 -0.015 -7.126 +10.062 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~5/4 = 380.578
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}


{{Optimal ET sequence|legend=1| 6, 16, 22, 60d, 82d }}
[[Badness]] (Sintel): 2.09
 
[[Badness]]: 0.082673


=== 11-limit ===
=== 11-limit ===
Line 109: Line 127:
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530
Optimal tunings:
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})


{{Optimal ET sequence|legend=1| 6, 16, 22, 60de, 82de }}
{{Optimal ET sequence|legend=0| 6, 16, 22 }}


Badness: 0.039151
Badness (Sintel): 1.29


==== 13-limit ====
==== 13-limit ====
Line 122: Line 142:
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787
Optimal tunings:
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})


{{Optimal ET sequence|legend=1| 6, 16, 22, 38f }}
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}


Badness: 0.034376
Badness (Sintel): 1.42


; Music
; Music
Line 138: Line 160:
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.837
Optimal tunings:
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})


{{Optimal ET sequence|legend=1| 16, 22f, 38 }}
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}


Badness: 0.035284
Badness (Sintel): 1.46


== Walid ==
== Walid ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 153: Line 179:
: mapping generators: ~7/5, ~3
: mapping generators: ~7/5, ~3


{{Multival|legend=1| 2 -2 -2 -8 -9 1 }}
[[Optimal tuning]]s:
 
* [[WE]]: ~7/5 = 589.0384{{c}}, ~3/2 = 735.7242{{c}} (~15/14 = 146.6857{{c}})
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~3/2 = 749.415
: [[error map]]: {{val| -21.923 +11.846 +12.193 +18.719 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}


{{Optimal ET sequence|legend=1| 2, 6, 8d }}
{{Optimal ET sequence|legend=1| 2, 6, 8d }}


[[Badness]]: 0.048978
[[Badness]] (Sintel): 1.24


=== 11-limit ===
=== 11-limit ===
Line 168: Line 196:
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 749.756
Optimal tunings:
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})


{{Optimal ET sequence|legend=1| 2, 6, 8d }}
{{Optimal ET sequence|legend=0| 2, 6, 8d }}


Badness: 0.029193
Badness (Sintel): 0.965


== Antikythera ==
== Antikythera ==
Line 189: Line 219:
: [[gencom]]: [7/5 8/7; 50/49 64/63]
: [[gencom]]: [7/5 8/7; 50/49 64/63]


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 214.095
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.8483{{c}}, ~9/8 = 213.6844{{c}}
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


{{Optimal ET sequence|legend=1| 4, 6, 16, 22, 28 }}
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}


[[Badness]]: 0.00501
[[Badness]] (Sintel): 0.253


== Doublewide ==
== Doublewide ==
=== 5-limit ===
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''
''Note: the 5-limit temperament is only stored here temporarily. [[Xenharmonic Wiki:WikiProject TempClean|TempClean]] intends to reorganize clan pages such that "in-law" temperaments that do not directly fall from the clan's gene will no longer be recorded directly on these pages.''
 
[[Subgroup]]: 2.3.5
 
[[Comma list]]: 390625/373248
 
{{Mapping|legend=1| 2 1 3 | 0 4 3 }}
 
[[Optimal tuning]] ([[POTE]]): ~625/432 = 1\2, ~6/5 = 325.815
 
Supporting ETs: 22, 26, 18, 48, 14b, 30bc, 10bbc, 70c, 40b, 74c, 34bc, 92c, 56bcc, 62b


[[Badness]] (Sintel): 5.319
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.  


=== 7-limit ===
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 218: Line 240:
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719
: mapping generators: ~7/5, ~6/5


{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48, 70c }}
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 600.0365{{c}}, ~6/5 = 325.7389{{c}} (~7/6 = 274.2975{{c}})
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


[[Badness]]: 0.043462
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}
 
[[Badness]] (Sintel): 1.10


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 99/98, 875/864
Comma list: 50/49, 99/98, 385/384


Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545
Optimal tunings:
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})


{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48, 70c, 118cd }}
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}


Badness: 0.032058
Badness (Sintel): 1.06


=== Fleetwood ===
=== Fleetwood ===
Line 244: Line 274:
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038
Optimal tunings:
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})


{{Optimal ET sequence|legend=1| 4e, 18e, 22 }}
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}


Badness: 0.035202
Badness (Sintel): 1.16


==== 13-limit ====
==== 13-limit ====
Line 257: Line 289:
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841
Optimal tunings:
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})


{{Optimal ET sequence|legend=1| 4ef, 18e, 22, 84bddf }}
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}


Badness: 0.031835
Badness (Sintel): 1.32


=== Cavalier ===
=== Cavalier ===
Line 270: Line 304:
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427
Optimal tunings:
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})


{{Optimal ET sequence|legend=1| 22e, 26 }}
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}


Badness: 0.052899
Badness (Sintel): 1.75


==== 13-limit ====
==== 13-limit ====
Line 283: Line 319:
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396
Optimal tunings:
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})


{{Optimal ET sequence|legend=1| 22ef, 26 }}
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}


Badness: 0.035040
Badness (Sintel): 1.45


== Elvis ==
== Elvis ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Elvis]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''
 
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 298: Line 338:
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}


{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}
: mapping generators: ~7/5, ~64/45


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~45/32 = 553.721
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.6846{{c}}, ~64/45 = 648.0937{{c}} (~64/63 = 46.4091{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}


[[Badness]]: 0.141473
[[Badness]] (Sintel): 3.58


=== 11-limit ===
=== 11-limit ===
Line 313: Line 357:
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882
Optimal tunings:
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})


{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}


Badness: 0.063212
Badness (Sintel): 2.09


=== 13-limit ===
=== 13-limit ===
Line 326: Line 372:
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892
Optimal tunings:
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})


{{Optimal ET sequence|legend=1| 2f, 24cf, 26 }}
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}


Badness: 0.043997
Badness (Sintel): 1.82


== Comic ==
== Comic ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Comic]].''
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
 
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 341: Line 391:
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}


{{Multival|legend=1| 4 14 14 13 11 -7 }}
: mapping generators: ~7/5, ~40/27


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~81/80 = 54.699
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.9554{{c}}, ~40/27 = 653.5596{{c}} (~28/27 = 54.6042{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Optimal ET sequence|legend=1| 20cd, 22 }}
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}


[[Badness]]: 0.084395
[[Badness]] (Sintel): 2.14


=== 11-limit ===
=== 11-limit ===
Line 356: Line 410:
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184
Optimal tunings:
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})


{{Optimal ET sequence|legend=1| 20cde, 22 }}
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}


Badness: 0.045052
Badness (Sintel): 1.49


=== 13-limit ===
=== 13-limit ===
Line 369: Line 425:
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435
Optimal tunings:
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})


{{Optimal ET sequence|legend=1| 22 }}
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}


Badness: 0.041470
Badness (Sintel): 1.71


== Bipyth ==
== Bipyth ==
{{See also| Archytas clan #Superpyth }}
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 384: Line 442:
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}


{{Multival|legend=1| 2 18 18 24 23 -9 }}
: mapping generators: ~7/5, ~3


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~3/2 = 709.437
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.7533{{c}}, ~3/2 = 707.9630{{c}} (~15/14 = 109.2098{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}


[[Badness]]: 0.165033
[[Badness]] (Sintel): 4.18


=== 11-limit ===
=== 11-limit ===
Line 399: Line 461:
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310
Optimal tunings:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})


{{Optimal ET sequence|legend=1| 10cd, 12cde, 22 }}
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}


Badness: 0.070910
Badness (Sintel): 2.34


== Sedecic ==
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 412: Line 478:
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}


{{Multival|legend=1| 16 0 0 -37 -45 0 }}
[[Optimal tuning]]s:
 
* [[WE]]: ~128/125 = 75.0539{{c}}, ~3/2 = 701.0578{{c}} (~525/512 = 25.5726{{c}})
[[Optimal tuning]] ([[POTE]]): ~128/125 = 1\16, ~3/2 = 700.554
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}


{{Optimal ET sequence|legend=1| 16, 32, 48 }}
{{Optimal ET sequence|legend=1| 16, 32, 48 }}


[[Badness]]: 0.265972
[[Badness]] (Sintel): 6.73


=== 11-limit ===
=== 11-limit ===
Line 427: Line 495:
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}


Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331
Optimal tunings:
 
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
{{Optimal ET sequence|legend=1| 16, 32, 48 }}
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
 
Badness: 0.092774
 
== Duodecim ==
{{See also| Compton family #Duodecim }}
 
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 36/35, 50/49, 64/63
 
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }}


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023
{{Optimal ET sequence|legend=0| 16, 32, 48 }}


{{Optimal ET sequence|legend=1| 12, 24d, 36d }}
Badness (Sintel): 3.07


[[Badness]]: 0.030536
== Notes ==


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]