|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| '''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | | '''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. |
|
| |
|
| {|class="wikitable" | | {{ZPI |
| !colspan="3"|Tuning
| | | zpi = 34 |
| !colspan="3"|Strength
| | | steps = 12.0231830072926 |
| !colspan="2"|Closest EDO
| | | step size = 99.8071807833375 |
| !colspan="2"|Integer limit
| | | height = 5.193290 |
| |-
| | | integral = 1.269599 |
| !ZPI
| | | gap = 15.899282 |
| !Steps per octave
| | | edo = 12edo |
| !Step size (cents)
| | | octave = 1197.68616940005 |
| !Height
| | | consistent = 10 |
| !Integral
| | | distinct = 6 |
| !Gap
| | }} |
| !EDO
| |
| !Octave (cents)
| |
| !Consistent
| |
| !Distinct
| |
| |-
| |
| |34zpi
| |
| |12.0231830072926
| |
| |99.8071807833375 | |
| |5.193290 | |
| |1.269599 | |
| |15.899282 | |
| |[[12edo]] | |
| |1197.68616940005 | |
| |10 | |
| |6 | |
| |}
| |
|
| |
|
| == Intervals == | | == Intervals == |
|
| |
| {| class="wikitable center-1 right-2 left-3 center-4" | | {| class="wikitable center-1 right-2 left-3 center-4" |
| |+ style="white-space:nowrap" | Intervals in 34zpi | | |+ style="font-size: 105%; white-space: nowrap;" | Intervals in 34zpi |
| |- | | |- |
| | colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | | | colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: |
Line 47: |
Line 30: |
| ! Cents | | ! Cents |
| ! Ratios | | ! Ratios |
| ! Ups and Downs Notation | | ! Ups and downs notation |
| |- | | |- |
| | 0 | | | 0 |
Line 296: |
Line 279: |
|
| |
|
| == Approximation to JI == | | == Approximation to JI == |
|
| |
| === Interval mappings ===
| |
|
| |
| The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''.
| |
|
| |
| {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
| |
| |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by direct approximation)
| |
| |-
| |
| ! Ratio
| |
| ! Error (abs, [[Cent|¢]])
| |
| ! Error (rel, [[Relative cent|%]])
| |
| |-
| |
| | [[4/3]]
| |
| | +0.991
| |
| | +0.993
| |
| |-
| |
| | [[8/3]]
| |
| | -1.323
| |
| | -1.325
| |
| |-
| |
| | [[16/9]]
| |
| | +1.982
| |
| | +1.986
| |
| |-
| |
| | '''[[2/1]]'''
| |
| | '''-2.314'''
| |
| | '''-2.318'''
| |
| |-
| |
| | [[15/1]]
| |
| | +2.669
| |
| | +2.674
| |
| |-
| |
| | [[3/2]]
| |
| | -3.305
| |
| | -3.311
| |
| |-
| |
| | [[16/3]]
| |
| | -3.637
| |
| | -3.644
| |
| |-
| |
| | [[9/8]]
| |
| | -4.296
| |
| | -4.304
| |
| |-
| |
| | [[4/1]]
| |
| | -4.628
| |
| | -4.637
| |
| |-
| |
| | [[15/2]]
| |
| | +4.983
| |
| | +4.992
| |
| |-
| |
| | '''[[3/1]]'''
| |
| | '''-5.619'''
| |
| | '''-5.629'''
| |
| |-
| |
| | [[10/1]]
| |
| | +5.974
| |
| | +5.985
| |
| |-
| |
| | [[9/4]]
| |
| | -6.609
| |
| | -6.622
| |
| |-
| |
| | [[8/1]]
| |
| | -6.941
| |
| | -6.955
| |
| |-
| |
| | [[15/4]]
| |
| | +7.296
| |
| | +7.311
| |
| |-
| |
| | [[6/1]]
| |
| | -7.932
| |
| | -7.948
| |
| |-
| |
| | '''[[5/1]]'''
| |
| | '''+8.287'''
| |
| | '''+8.303'''
| |
| |-
| |
| | [[9/2]]
| |
| | -8.923
| |
| | -8.941
| |
| |-
| |
| | [[16/1]]
| |
| | -9.255
| |
| | -9.273
| |
| |-
| |
| | [[15/8]]
| |
| | +9.610
| |
| | +9.629
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/11]]''
| |
| | ''+10.212''
| |
| | ''+10.232''
| |
| |-
| |
| | [[12/1]]
| |
| | -10.246
| |
| | -10.266
| |
| |-
| |
| | [[5/2]]
| |
| | +10.601
| |
| | +10.622
| |
| |-
| |
| | [[9/1]]
| |
| | -11.237
| |
| | -11.259
| |
| |-
| |
| | [[10/3]]
| |
| | +11.592
| |
| | +11.614
| |
| |-
| |
| | [[16/15]]
| |
| | -11.924
| |
| | -11.947
| |
| |-
| |
| | [[5/4]]
| |
| | +12.915
| |
| | +12.940
| |
| |-
| |
| | [[5/3]]
| |
| | +13.906
| |
| | +13.933
| |
| |-
| |
| | [[14/5]]
| |
| | +14.017
| |
| | +14.044
| |
| |-
| |
| | [[8/5]]
| |
| | -15.229
| |
| | -15.258
| |
| |-
| |
| | [[11/7]]
| |
| | +15.965
| |
| | +15.996
| |
| |-
| |
| | [[6/5]]
| |
| | -16.220
| |
| | -16.251
| |
| |-
| |
| | [[7/5]]
| |
| | +16.331
| |
| | +16.362
| |
| |-
| |
| | [[10/9]]
| |
| | +17.211
| |
| | +17.244
| |
| |-
| |
| | [[16/5]]
| |
| | -17.543
| |
| | -17.577
| |
| |-
| |
| | [[14/11]]
| |
| | -18.279
| |
| | -18.315
| |
| |-
| |
| | [[12/5]]
| |
| | -18.534
| |
| | -18.569
| |
| |-
| |
| | [[10/7]]
| |
| | -18.645
| |
| | -18.681
| |
| |-
| |
| | [[9/5]]
| |
| | -19.524
| |
| | -19.562
| |
| |-
| |
| | [[15/14]]
| |
| | -19.636
| |
| | -19.674
| |
| |-
| |
| | [[15/7]]
| |
| | -21.949
| |
| | -21.992
| |
| |-
| |
| | [[14/1]]
| |
| | +22.304
| |
| | +22.347
| |
| |-
| |
| | '''[[7/1]]'''
| |
| | '''+24.618'''
| |
| | '''+24.666'''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/7]]''
| |
| | ''+26.177''
| |
| | ''+26.228''
| |
| |-
| |
| | [[7/2]]
| |
| | +26.932
| |
| | +26.984
| |
| |-
| |
| | [[14/3]]
| |
| | +27.923
| |
| | +27.977
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[14/13]]''
| |
| | ''-28.491''
| |
| | ''-28.546''
| |
| |-
| |
| | [[7/4]]
| |
| | +29.246
| |
| | +29.302
| |
| |-
| |
| | [[7/3]]
| |
| | +30.237
| |
| | +30.295
| |
| |-
| |
| | [[8/7]]
| |
| | -31.560
| |
| | -31.621
| |
| |-
| |
| | [[11/5]]
| |
| | +32.296
| |
| | +32.359
| |
| |-
| |
| | [[7/6]]
| |
| | +32.551
| |
| | +32.614
| |
| |-
| |
| | [[14/9]]
| |
| | +33.542
| |
| | +33.606
| |
| |-
| |
| | [[16/7]]
| |
| | -33.874
| |
| | -33.939
| |
| |-
| |
| | [[11/10]]
| |
| | +34.610
| |
| | +34.677
| |
| |-
| |
| | [[12/7]]
| |
| | -34.864
| |
| | -34.932
| |
| |-
| |
| | [[9/7]]
| |
| | -35.855
| |
| | -35.925
| |
| |-
| |
| | [[13/9]]
| |
| | -37.775
| |
| | -37.848
| |
| |-
| |
| | [[15/11]]
| |
| | -37.915
| |
| | -37.988
| |
| |-
| |
| | [[13/12]]
| |
| | -38.765
| |
| | -38.840
| |
| |-
| |
| | [[16/13]]
| |
| | +39.756
| |
| | +39.833
| |
| |-
| |
| | '''[[11/1]]'''
| |
| | '''+40.584'''
| |
| | '''+40.662'''
| |
| |-
| |
| | [[13/6]]
| |
| | -41.079
| |
| | -41.159
| |
| |-
| |
| | [[13/8]]
| |
| | -42.070
| |
| | -42.151
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/5]]''
| |
| | ''+42.508''
| |
| | ''+42.590''
| |
| |-
| |
| | [[11/2]]
| |
| | +42.897
| |
| | +42.980
| |
| |-
| |
| | [[13/3]]
| |
| | -43.393
| |
| | -43.477
| |
| |-
| |
| | [[13/4]]
| |
| | -44.384
| |
| | -44.470
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/10]]''
| |
| | ''+44.822''
| |
| | ''+44.909''
| |
| |-
| |
| | [[11/4]]
| |
| | +45.211
| |
| | +45.299
| |
| |-
| |
| | [[11/3]]
| |
| | +46.202
| |
| | +46.291
| |
| |-
| |
| | [[13/2]]
| |
| | -46.698
| |
| | -46.788
| |
| |-
| |
| | [[11/8]]
| |
| | +47.525
| |
| | +47.617
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[11/9]]''
| |
| | ''-47.986''
| |
| | ''-48.079''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[15/13]]''
| |
| | ''-48.127''
| |
| | ''-48.220''
| |
| |-
| |
| | [[11/6]]
| |
| | +48.516
| |
| | +48.610
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[12/11]]''
| |
| | ''+48.977''
| |
| | ''+49.072''
| |
| |-
| |
| | '''[[13/1]]'''
| |
| | '''-49.012'''
| |
| | '''-49.106'''
| |
| |-
| |
| | [[16/11]]
| |
| | -49.839
| |
| | -49.935
| |
| |}
| |
|
| |
| {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
| |
| |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by patent val mapping)
| |
| |-
| |
| ! Ratio
| |
| ! Error (abs, [[Cent|¢]])
| |
| ! Error (rel, [[Relative cent|%]])
| |
| |-
| |
| | [[4/3]]
| |
| | +0.991
| |
| | +0.993
| |
| |-
| |
| | [[8/3]]
| |
| | -1.323
| |
| | -1.325
| |
| |-
| |
| | [[16/9]]
| |
| | +1.982
| |
| | +1.986
| |
| |-
| |
| | '''[[2/1]]'''
| |
| | '''-2.314'''
| |
| | '''-2.318'''
| |
| |-
| |
| | [[15/1]]
| |
| | +2.669
| |
| | +2.674
| |
| |-
| |
| | [[3/2]]
| |
| | -3.305
| |
| | -3.311
| |
| |-
| |
| | [[16/3]]
| |
| | -3.637
| |
| | -3.644
| |
| |-
| |
| | [[9/8]]
| |
| | -4.296
| |
| | -4.304
| |
| |-
| |
| | [[4/1]]
| |
| | -4.628
| |
| | -4.637
| |
| |-
| |
| | [[15/2]]
| |
| | +4.983
| |
| | +4.992
| |
| |-
| |
| | '''[[3/1]]'''
| |
| | '''-5.619'''
| |
| | '''-5.629'''
| |
| |-
| |
| | [[10/1]]
| |
| | +5.974
| |
| | +5.985
| |
| |-
| |
| | [[9/4]]
| |
| | -6.609
| |
| | -6.622
| |
| |-
| |
| | [[8/1]]
| |
| | -6.941
| |
| | -6.955
| |
| |-
| |
| | [[15/4]]
| |
| | +7.296
| |
| | +7.311
| |
| |-
| |
| | [[6/1]]
| |
| | -7.932
| |
| | -7.948
| |
| |-
| |
| | '''[[5/1]]'''
| |
| | '''+8.287'''
| |
| | '''+8.303'''
| |
| |-
| |
| | [[9/2]]
| |
| | -8.923
| |
| | -8.941
| |
| |-
| |
| | [[16/1]]
| |
| | -9.255
| |
| | -9.273
| |
| |-
| |
| | [[15/8]]
| |
| | +9.610
| |
| | +9.629
| |
| |-
| |
| | [[12/1]]
| |
| | -10.246
| |
| | -10.266
| |
| |-
| |
| | [[5/2]]
| |
| | +10.601
| |
| | +10.622
| |
| |-
| |
| | [[9/1]]
| |
| | -11.237
| |
| | -11.259
| |
| |-
| |
| | [[10/3]]
| |
| | +11.592
| |
| | +11.614
| |
| |-
| |
| | [[16/15]]
| |
| | -11.924
| |
| | -11.947
| |
| |-
| |
| | [[5/4]]
| |
| | +12.915
| |
| | +12.940
| |
| |-
| |
| | [[5/3]]
| |
| | +13.906
| |
| | +13.933
| |
| |-
| |
| | [[14/5]]
| |
| | +14.017
| |
| | +14.044
| |
| |-
| |
| | [[8/5]]
| |
| | -15.229
| |
| | -15.258
| |
| |-
| |
| | [[11/7]]
| |
| | +15.965
| |
| | +15.996
| |
| |-
| |
| | [[6/5]]
| |
| | -16.220
| |
| | -16.251
| |
| |-
| |
| | [[7/5]]
| |
| | +16.331
| |
| | +16.362
| |
| |-
| |
| | [[10/9]]
| |
| | +17.211
| |
| | +17.244
| |
| |-
| |
| | [[16/5]]
| |
| | -17.543
| |
| | -17.577
| |
| |-
| |
| | [[14/11]]
| |
| | -18.279
| |
| | -18.315
| |
| |-
| |
| | [[12/5]]
| |
| | -18.534
| |
| | -18.569
| |
| |-
| |
| | [[10/7]]
| |
| | -18.645
| |
| | -18.681
| |
| |-
| |
| | [[9/5]]
| |
| | -19.524
| |
| | -19.562
| |
| |-
| |
| | [[15/14]]
| |
| | -19.636
| |
| | -19.674
| |
| |-
| |
| | [[15/7]]
| |
| | -21.949
| |
| | -21.992
| |
| |-
| |
| | [[14/1]]
| |
| | +22.304
| |
| | +22.347
| |
| |-
| |
| | '''[[7/1]]'''
| |
| | '''+24.618'''
| |
| | '''+24.666'''
| |
| |-
| |
| | [[7/2]]
| |
| | +26.932
| |
| | +26.984
| |
| |-
| |
| | [[14/3]]
| |
| | +27.923
| |
| | +27.977
| |
| |-
| |
| | [[7/4]]
| |
| | +29.246
| |
| | +29.302
| |
| |-
| |
| | [[7/3]]
| |
| | +30.237
| |
| | +30.295
| |
| |-
| |
| | [[8/7]]
| |
| | -31.560
| |
| | -31.621
| |
| |-
| |
| | [[11/5]]
| |
| | +32.296
| |
| | +32.359
| |
| |-
| |
| | [[7/6]]
| |
| | +32.551
| |
| | +32.614
| |
| |-
| |
| | [[14/9]]
| |
| | +33.542
| |
| | +33.606
| |
| |-
| |
| | [[16/7]]
| |
| | -33.874
| |
| | -33.939
| |
| |-
| |
| | [[11/10]]
| |
| | +34.610
| |
| | +34.677
| |
| |-
| |
| | [[12/7]]
| |
| | -34.864
| |
| | -34.932
| |
| |-
| |
| | [[9/7]]
| |
| | -35.855
| |
| | -35.925
| |
| |-
| |
| | [[13/9]]
| |
| | -37.775
| |
| | -37.848
| |
| |-
| |
| | [[15/11]]
| |
| | -37.915
| |
| | -37.988
| |
| |-
| |
| | [[13/12]]
| |
| | -38.765
| |
| | -38.840
| |
| |-
| |
| | [[16/13]]
| |
| | +39.756
| |
| | +39.833
| |
| |-
| |
| | '''[[11/1]]'''
| |
| | '''+40.584'''
| |
| | '''+40.662'''
| |
| |-
| |
| | [[13/6]]
| |
| | -41.079
| |
| | -41.159
| |
| |-
| |
| | [[13/8]]
| |
| | -42.070
| |
| | -42.151
| |
| |-
| |
| | [[11/2]]
| |
| | +42.897
| |
| | +42.980
| |
| |-
| |
| | [[13/3]]
| |
| | -43.393
| |
| | -43.477
| |
| |-
| |
| | [[13/4]]
| |
| | -44.384
| |
| | -44.470
| |
| |-
| |
| | [[11/4]]
| |
| | +45.211
| |
| | +45.299
| |
| |-
| |
| | [[11/3]]
| |
| | +46.202
| |
| | +46.291
| |
| |-
| |
| | [[13/2]]
| |
| | -46.698
| |
| | -46.788
| |
| |-
| |
| | [[11/8]]
| |
| | +47.525
| |
| | +47.617
| |
| |-
| |
| | [[11/6]]
| |
| | +48.516
| |
| | +48.610
| |
| |-
| |
| | '''[[13/1]]'''
| |
| | '''-49.012'''
| |
| | '''-49.106'''
| |
| |-
| |
| | [[16/11]]
| |
| | -49.839
| |
| | -49.935
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[12/11]]''
| |
| | ''-50.830''
| |
| | ''-50.928''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[15/13]]''
| |
| | ''+51.680''
| |
| | ''+51.780''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[11/9]]''
| |
| | ''+51.821''
| |
| | ''+51.921''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/10]]''
| |
| | ''-54.985''
| |
| | ''-55.091''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/5]]''
| |
| | ''-57.299''
| |
| | ''-57.410''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[14/13]]''
| |
| | ''+71.316''
| |
| | ''+71.454''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/7]]''
| |
| | ''-73.630''
| |
| | ''-73.772''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/11]]''
| |
| | ''-89.595''
| |
| | ''-89.768''
| |
| |}
| |
|
| |
|
| == Approximation to JI ==
| |
|
| |
| === Interval mappings === | | === Interval mappings === |
|
| |
|