34zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(30 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 34 | |||
| steps = 12.0231830072926 | |||
| step size = 99.8071807833375 | |||
| height = 5.193290 | |||
| integral = 1.269599 | |||
| gap = 15.899282 | |||
| edo = 12edo | |||
| octave = 1197.68616940005 | |||
| consistent = 10 | |||
| distinct = 6 | |||
}} | |||
|99.8071807833375 | |||
|5.193290 | |||
|1.269599 | |||
|15.899282 | |||
| | |||
|1197.68616940005 | |||
|10 | |||
|6 | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 left-3 center-4" | {| class="wikitable center-1 right-2 left-3 center-4" | ||
|+ style="white-space: nowrap;" | 34zpi | |+ style="font-size: 105%; white-space: nowrap;" | Intervals in 34zpi | ||
|- | |- | ||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer limit ratios,<br>and are stylized as follows to indicate their accuracy: | | colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | ||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
* '''Bold:''' relative error < 16.667 % | * '''Bold:''' relative error < 16.667 % | ||
Line 42: | Line 25: | ||
* <small><small>Small Small:</small></small> relative error < 41.667 % | * <small><small>Small Small:</small></small> relative error < 41.667 % | ||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | * <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | ||
| style="text-align:right;" | <center>''' | | style="text-align:right;" | <center>'''⟨12 19]'''</center><br>[[9/8|Whole tone]] = 2 steps<br>[[256/243|Limma]] = 1 step<br>[[2187/2048|Apotome]] = 1 step | ||
|- | |- | ||
! Degree | ! Degree | ||
! Cents | ! Cents | ||
! Ratios | ! Ratios | ||
! Ups and | ! Ups and downs notation | ||
|- | |- | ||
| 0 | | 0 | ||
Line 296: | Line 279: | ||
== Approximation to JI == | == Approximation to JI == | ||
=== Interval mappings === | |||
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | ||
|+ style="white-space: nowrap;" | | |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by direct approximation) | ||
|- | |- | ||
! Ratio | ! Ratio | ||
Line 305: | Line 292: | ||
|- | |- | ||
| [[4/3]] | | [[4/3]] | ||
| | | +0.991 | ||
| | | +0.993 | ||
|- | |- | ||
| [[8/3]] | | [[8/3]] | ||
| | | -1.323 | ||
| | | -1.325 | ||
|- | |- | ||
| [[16/9]] | | [[16/9]] | ||
| | | +1.982 | ||
| | | +1.986 | ||
|- | |- | ||
| '''[[2/1]]''' | | '''[[2/1]]''' | ||
| ''' | | '''-2.314''' | ||
| ''' | | '''-2.318''' | ||
|- | |- | ||
| [[15/1]] | | [[15/1]] | ||
| | | +2.669 | ||
| | | +2.674 | ||
|- | |- | ||
| [[3/2]] | | [[3/2]] | ||
| | | -3.305 | ||
| | | -3.311 | ||
|- | |- | ||
| [[16/3]] | | [[16/3]] | ||
| | | -3.637 | ||
| | | -3.644 | ||
|- | |- | ||
| [[9/8]] | | [[9/8]] | ||
| | | -4.296 | ||
| | | -4.304 | ||
|- | |- | ||
| [[4/1]] | | [[4/1]] | ||
| | | -4.628 | ||
| | | -4.637 | ||
|- | |- | ||
| [[15/2]] | | [[15/2]] | ||
| | | +4.983 | ||
| | | +4.992 | ||
|- | |- | ||
| '''[[3/1]]''' | | '''[[3/1]]''' | ||
| ''' | | '''-5.619''' | ||
| ''' | | '''-5.629''' | ||
|- | |- | ||
| [[10/1]] | | [[10/1]] | ||
| | | +5.974 | ||
| | | +5.985 | ||
|- | |- | ||
| [[9/4]] | | [[9/4]] | ||
| | | -6.609 | ||
| | | -6.622 | ||
|- | |- | ||
| [[8/1]] | | [[8/1]] | ||
| | | -6.941 | ||
| | | -6.955 | ||
|- | |- | ||
| [[15/4]] | | [[15/4]] | ||
| | | +7.296 | ||
| | | +7.311 | ||
|- | |- | ||
| [[6/1]] | | [[6/1]] | ||
| | | -7.932 | ||
| | | -7.948 | ||
|- | |- | ||
| '''[[5/1]]''' | | '''[[5/1]]''' | ||
| ''' | | '''+8.287''' | ||
| ''' | | '''+8.303''' | ||
|- | |- | ||
| [[9/2]] | | [[9/2]] | ||
| | | -8.923 | ||
| | | -8.941 | ||
|- | |- | ||
| [[16/1]] | | [[16/1]] | ||
| | | -9.255 | ||
| | | -9.273 | ||
|- | |- | ||
| [[15/8]] | | [[15/8]] | ||
| | | +9.610 | ||
| | | +9.629 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/11]]'' | | ''[[13/11]]'' | ||
| '' | | ''+10.212'' | ||
| '' | | ''+10.232'' | ||
|- | |- | ||
| [[12/1]] | | [[12/1]] | ||
| | | -10.246 | ||
| | | -10.266 | ||
|- | |- | ||
| [[5/2]] | | [[5/2]] | ||
| | | +10.601 | ||
| | | +10.622 | ||
|- | |- | ||
| [[9/1]] | | [[9/1]] | ||
| | | -11.237 | ||
| | | -11.259 | ||
|- | |- | ||
| [[10/3]] | | [[10/3]] | ||
| | | +11.592 | ||
| | | +11.614 | ||
|- | |- | ||
| [[16/15]] | | [[16/15]] | ||
| | | -11.924 | ||
| | | -11.947 | ||
|- | |- | ||
| [[5/4]] | | [[5/4]] | ||
| | | +12.915 | ||
| | | +12.940 | ||
|- | |- | ||
| [[5/3]] | | [[5/3]] | ||
| | | +13.906 | ||
| | | +13.933 | ||
|- | |- | ||
| [[14/5]] | | [[14/5]] | ||
| | | +14.017 | ||
| | | +14.044 | ||
|- | |- | ||
| [[8/5]] | | [[8/5]] | ||
| | | -15.229 | ||
| | | -15.258 | ||
|- | |- | ||
| [[11/7]] | | [[11/7]] | ||
| | | +15.965 | ||
| | | +15.996 | ||
|- | |- | ||
| [[6/5]] | | [[6/5]] | ||
| | | -16.220 | ||
| | | -16.251 | ||
|- | |- | ||
| [[7/5]] | | [[7/5]] | ||
| | | +16.331 | ||
| | | +16.362 | ||
|- | |- | ||
| [[10/9]] | | [[10/9]] | ||
| | | +17.211 | ||
| | | +17.244 | ||
|- | |- | ||
| [[16/5]] | | [[16/5]] | ||
| | | -17.543 | ||
| | | -17.577 | ||
|- | |- | ||
| [[14/11]] | | [[14/11]] | ||
| | | -18.279 | ||
| | | -18.315 | ||
|- | |- | ||
| [[12/5]] | | [[12/5]] | ||
| | | -18.534 | ||
| | | -18.569 | ||
|- | |- | ||
| [[10/7]] | | [[10/7]] | ||
| | | -18.645 | ||
| | | -18.681 | ||
|- | |- | ||
| [[9/5]] | | [[9/5]] | ||
| | | -19.524 | ||
| | | -19.562 | ||
|- | |- | ||
| [[15/14]] | | [[15/14]] | ||
| | | -19.636 | ||
| | | -19.674 | ||
|- | |- | ||
| [[15/7]] | | [[15/7]] | ||
| | | -21.949 | ||
| | | -21.992 | ||
|- | |- | ||
| [[14/1]] | | [[14/1]] | ||
| | | +22.304 | ||
| | | +22.347 | ||
|- | |- | ||
| '''[[7/1]]''' | | '''[[7/1]]''' | ||
| ''' | | '''+24.618''' | ||
| ''' | | '''+24.666''' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/7]]'' | | ''[[13/7]]'' | ||
| '' | | ''+26.177'' | ||
| '' | | ''+26.228'' | ||
|- | |- | ||
| [[7/2]] | | [[7/2]] | ||
| | | +26.932 | ||
| | | +26.984 | ||
|- | |- | ||
| [[14/3]] | | [[14/3]] | ||
| | | +27.923 | ||
| | | +27.977 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[14/13]]'' | | ''[[14/13]]'' | ||
| '' | | ''-28.491'' | ||
| '' | | ''-28.546'' | ||
|- | |- | ||
| [[7/4]] | | [[7/4]] | ||
| | | +29.246 | ||
| | | +29.302 | ||
|- | |- | ||
| [[7/3]] | | [[7/3]] | ||
| | | +30.237 | ||
| | | +30.295 | ||
|- | |- | ||
| [[8/7]] | | [[8/7]] | ||
| | | -31.560 | ||
| | | -31.621 | ||
|- | |- | ||
| [[11/5]] | | [[11/5]] | ||
| | | +32.296 | ||
| | | +32.359 | ||
|- | |- | ||
| [[7/6]] | | [[7/6]] | ||
| | | +32.551 | ||
| | | +32.614 | ||
|- | |- | ||
| [[14/9]] | | [[14/9]] | ||
| | | +33.542 | ||
| | | +33.606 | ||
|- | |- | ||
| [[16/7]] | | [[16/7]] | ||
| | | -33.874 | ||
| | | -33.939 | ||
|- | |- | ||
| [[11/10]] | | [[11/10]] | ||
| | | +34.610 | ||
| | | +34.677 | ||
|- | |- | ||
| [[12/7]] | | [[12/7]] | ||
| | | -34.864 | ||
| | | -34.932 | ||
|- | |- | ||
| [[9/7]] | | [[9/7]] | ||
| | | -35.855 | ||
| | | -35.925 | ||
|- | |- | ||
| [[13/9]] | | [[13/9]] | ||
| | | -37.775 | ||
| | | -37.848 | ||
|- | |- | ||
| [[15/11]] | | [[15/11]] | ||
| | | -37.915 | ||
| | | -37.988 | ||
|- | |- | ||
| [[13/12]] | | [[13/12]] | ||
| | | -38.765 | ||
| | | -38.840 | ||
|- | |- | ||
| [[16/13]] | | [[16/13]] | ||
| | | +39.756 | ||
| | | +39.833 | ||
|- | |- | ||
| '''[[11/1]]''' | | '''[[11/1]]''' | ||
| ''' | | '''+40.584''' | ||
| ''' | | '''+40.662''' | ||
|- | |- | ||
| [[13/6]] | | [[13/6]] | ||
| | | -41.079 | ||
| | | -41.159 | ||
|- | |- | ||
| [[13/8]] | | [[13/8]] | ||
| | | -42.070 | ||
| | | -42.151 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/5]]'' | | ''[[13/5]]'' | ||
| '' | | ''+42.508'' | ||
| '' | | ''+42.590'' | ||
|- | |- | ||
| [[11/2]] | | [[11/2]] | ||
| | | +42.897 | ||
| | | +42.980 | ||
|- | |- | ||
| [[13/3]] | | [[13/3]] | ||
| | | -43.393 | ||
| | | -43.477 | ||
|- | |- | ||
| [[13/4]] | | [[13/4]] | ||
| | | -44.384 | ||
| | | -44.470 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/10]]'' | | ''[[13/10]]'' | ||
| '' | | ''+44.822'' | ||
| '' | | ''+44.909'' | ||
|- | |- | ||
| [[11/4]] | | [[11/4]] | ||
| | | +45.211 | ||
| | | +45.299 | ||
|- | |- | ||
| [[11/3]] | | [[11/3]] | ||
| | | +46.202 | ||
| | | +46.291 | ||
|- | |- | ||
| [[13/2]] | | [[13/2]] | ||
| | | -46.698 | ||
| | | -46.788 | ||
|- | |- | ||
| [[11/8]] | | [[11/8]] | ||
| | | +47.525 | ||
| | | +47.617 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[11/9]]'' | | ''[[11/9]]'' | ||
| '' | | ''-47.986'' | ||
| '' | | ''-48.079'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[15/13]]'' | | ''[[15/13]]'' | ||
| '' | | ''-48.127'' | ||
| '' | | ''-48.220'' | ||
|- | |- | ||
| [[11/6]] | | [[11/6]] | ||
| | | +48.516 | ||
| -48. | | +48.610 | ||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+48.977'' | |||
| ''+49.072'' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-49.012''' | |||
| '''-49.106''' | |||
|- | |||
| [[16/11]] | |||
| -49.839 | |||
| -49.935 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[4/3]] | |||
| +0.991 | |||
| +0.993 | |||
|- | |||
| [[8/3]] | |||
| -1.323 | |||
| -1.325 | |||
|- | |||
| [[16/9]] | |||
| +1.982 | |||
| +1.986 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-2.314''' | |||
| '''-2.318''' | |||
|- | |||
| [[15/1]] | |||
| +2.669 | |||
| +2.674 | |||
|- | |||
| [[3/2]] | |||
| -3.305 | |||
| -3.311 | |||
|- | |||
| [[16/3]] | |||
| -3.637 | |||
| -3.644 | |||
|- | |||
| [[9/8]] | |||
| -4.296 | |||
| -4.304 | |||
|- | |||
| [[4/1]] | |||
| -4.628 | |||
| -4.637 | |||
|- | |||
| [[15/2]] | |||
| +4.983 | |||
| +4.992 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.619''' | |||
| '''-5.629''' | |||
|- | |||
| [[10/1]] | |||
| +5.974 | |||
| +5.985 | |||
|- | |||
| [[9/4]] | |||
| -6.609 | |||
| -6.622 | |||
|- | |||
| [[8/1]] | |||
| -6.941 | |||
| -6.955 | |||
|- | |||
| [[15/4]] | |||
| +7.296 | |||
| +7.311 | |||
|- | |||
| [[6/1]] | |||
| -7.932 | |||
| -7.948 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+8.287''' | |||
| '''+8.303''' | |||
|- | |- | ||
| ''[[12/11]]'' | | [[9/2]] | ||
| '' | | -8.923 | ||
| '' | | -8.941 | ||
|- | |||
| [[16/1]] | |||
| -9.255 | |||
| -9.273 | |||
|- | |||
| [[15/8]] | |||
| +9.610 | |||
| +9.629 | |||
|- | |||
| [[12/1]] | |||
| -10.246 | |||
| -10.266 | |||
|- | |||
| [[5/2]] | |||
| +10.601 | |||
| +10.622 | |||
|- | |||
| [[9/1]] | |||
| -11.237 | |||
| -11.259 | |||
|- | |||
| [[10/3]] | |||
| +11.592 | |||
| +11.614 | |||
|- | |||
| [[16/15]] | |||
| -11.924 | |||
| -11.947 | |||
|- | |||
| [[5/4]] | |||
| +12.915 | |||
| +12.940 | |||
|- | |||
| [[5/3]] | |||
| +13.906 | |||
| +13.933 | |||
|- | |||
| [[14/5]] | |||
| +14.017 | |||
| +14.044 | |||
|- | |||
| [[8/5]] | |||
| -15.229 | |||
| -15.258 | |||
|- | |||
| [[11/7]] | |||
| +15.965 | |||
| +15.996 | |||
|- | |||
| [[6/5]] | |||
| -16.220 | |||
| -16.251 | |||
|- | |||
| [[7/5]] | |||
| +16.331 | |||
| +16.362 | |||
|- | |||
| [[10/9]] | |||
| +17.211 | |||
| +17.244 | |||
|- | |||
| [[16/5]] | |||
| -17.543 | |||
| -17.577 | |||
|- | |||
| [[14/11]] | |||
| -18.279 | |||
| -18.315 | |||
|- | |||
| [[12/5]] | |||
| -18.534 | |||
| -18.569 | |||
|- | |||
| [[10/7]] | |||
| -18.645 | |||
| -18.681 | |||
|- | |||
| [[9/5]] | |||
| -19.524 | |||
| -19.562 | |||
|- | |||
| [[15/14]] | |||
| -19.636 | |||
| -19.674 | |||
|- | |||
| [[15/7]] | |||
| -21.949 | |||
| -21.992 | |||
|- | |||
| [[14/1]] | |||
| +22.304 | |||
| +22.347 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+24.618''' | |||
| '''+24.666''' | |||
|- | |||
| [[7/2]] | |||
| +26.932 | |||
| +26.984 | |||
|- | |||
| [[14/3]] | |||
| +27.923 | |||
| +27.977 | |||
|- | |||
| [[7/4]] | |||
| +29.246 | |||
| +29.302 | |||
|- | |||
| [[7/3]] | |||
| +30.237 | |||
| +30.295 | |||
|- | |||
| [[8/7]] | |||
| -31.560 | |||
| -31.621 | |||
|- | |||
| [[11/5]] | |||
| +32.296 | |||
| +32.359 | |||
|- | |||
| [[7/6]] | |||
| +32.551 | |||
| +32.614 | |||
|- | |||
| [[14/9]] | |||
| +33.542 | |||
| +33.606 | |||
|- | |||
| [[16/7]] | |||
| -33.874 | |||
| -33.939 | |||
|- | |||
| [[11/10]] | |||
| +34.610 | |||
| +34.677 | |||
|- | |||
| [[12/7]] | |||
| -34.864 | |||
| -34.932 | |||
|- | |||
| [[9/7]] | |||
| -35.855 | |||
| -35.925 | |||
|- | |||
| [[13/9]] | |||
| -37.775 | |||
| -37.848 | |||
|- | |||
| [[15/11]] | |||
| -37.915 | |||
| -37.988 | |||
|- | |||
| [[13/12]] | |||
| -38.765 | |||
| -38.840 | |||
|- | |||
| [[16/13]] | |||
| +39.756 | |||
| +39.833 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''+40.584''' | |||
| '''+40.662''' | |||
|- | |||
| [[13/6]] | |||
| -41.079 | |||
| -41.159 | |||
|- | |||
| [[13/8]] | |||
| -42.070 | |||
| -42.151 | |||
|- | |||
| [[11/2]] | |||
| +42.897 | |||
| +42.980 | |||
|- | |||
| [[13/3]] | |||
| -43.393 | |||
| -43.477 | |||
|- | |||
| [[13/4]] | |||
| -44.384 | |||
| -44.470 | |||
|- | |||
| [[11/4]] | |||
| +45.211 | |||
| +45.299 | |||
|- | |||
| [[11/3]] | |||
| +46.202 | |||
| +46.291 | |||
|- | |||
| [[13/2]] | |||
| -46.698 | |||
| -46.788 | |||
|- | |||
| [[11/8]] | |||
| +47.525 | |||
| +47.617 | |||
|- | |||
| [[11/6]] | |||
| +48.516 | |||
| +48.610 | |||
|- | |- | ||
| '''[[13/1]]''' | | '''[[13/1]]''' | ||
| ''' | | '''-49.012''' | ||
| ''' | | '''-49.106''' | ||
|- | |- | ||
| [[16/11]] | | [[16/11]] | ||
| | | -49.839 | ||
| | | -49.935 | ||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''-50.830'' | |||
| ''-50.928'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/13]]'' | |||
| ''+51.680'' | |||
| ''+51.780'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''+51.821'' | |||
| ''+51.921'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''-54.985'' | |||
| ''-55.091'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/5]]'' | |||
| ''-57.299'' | |||
| ''-57.410'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/13]]'' | |||
| ''+71.316'' | |||
| ''+71.454'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/7]]'' | |||
| ''-73.630'' | |||
| ''-73.772'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/11]]'' | |||
| ''-89.595'' | |||
| ''-89.768'' | |||
|} | |} | ||