45zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(14 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''45 zeta peak index''' (abbreviated '''45zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 45th peak of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''45 zeta peak index''' (abbreviated '''45zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 45th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 45 | |||
| steps = 14.5944346577250 | |||
| step size = 82.2231232756126 | |||
| height = 2.097730 | |||
| integral = 0.344839 | |||
| gap = 10.594800 | |||
| edo = 15edo | |||
| octave = 1233.34684913419 | |||
| consistent = 2 | |||
| distinct = 2 | |||
}} | |||
|82.2231232756126 | |||
|2.097730 | |||
|0.344839 | |||
|10.594800 | |||
| | |||
|1233.34684913419 | |||
|2 | |||
|2 | |||
== Theory == | == Theory == | ||
45zpi is characterized by a very broad octave error, yet it maintains a quite decent zeta strength. This combination makes it an ideal candidate for no-octave tuning applications. | 45zpi is characterized by a very broad octave error, yet it maintains a quite decent zeta strength. This combination makes it an ideal candidate for no-octave tuning applications. | ||
No other [[Zeta peak index|zeta peak indexes]] exhibit both a larger octave error and greater zeta height than 45zpi. | |||
45zpi supports a complex chord structure with ratios of 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25, which further exemplifies its capabilities. | 45zpi supports a complex chord structure with ratios of 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25, which further exemplifies its capabilities. | ||
[[File:45zpi chord 1-3-4-5-7-9-13-15-18-19-20-21-22-23-24-25.mp3|45zpi chord 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25]] | [[File:45zpi chord 1-3-4-5-7-9-13-15-18-19-20-21-22-23-24-25.mp3|45zpi chord 1:3:4:5:7:9:13:15:18:19:20:21:22:23:24:25]] | ||
The closest [[Zeta peak index|zeta peak indexes]] to 45zpi that exceed its strength are [[42zpi]] and [[47zpi]], though [[43zpi]] is nearly as strong as 45zpi. | |||
=== Harmonic series === | === Harmonic series === | ||
{{Harmonics in cet|82.2231232756126|columns=15|title=Approximation of harmonics in 45zpi}} | {{Harmonics in cet|82.2231232756126|columns=15|title=Approximation of harmonics in 45zpi}} | ||
{{Harmonics in cet|82.2231232756126|columns=16|start=16|title=Approximation of harmonics in 45zpi}} | {{Harmonics in cet|82.2231232756126|columns=16|start=16|title=Approximation of harmonics in 45zpi}} | ||
== Intervals == | |||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | |||
|+ style="white-space:nowrap" | Intervals in 45zpi | |||
|- | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 25-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | |||
* '''Bold:''' relative error < 16.667 % | |||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| colspan="2" style="text-align:right;" | <center>'''⟨73 116] at every 5 steps'''</center><br>[[9/8|Whole tone]] = 13 steps<br>[[256/243|Limma]] = 4 steps<br>[[2187/2048|Apotome]] = 9 steps | |||
|- | |||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and downs notation | |||
! Step | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
| P1 | |||
| 0 | |||
|- | |||
| 1 | |||
| 82.223 | |||
| '''[[25/24]]''', '''[[24/23]]''', '''<u>[[23/22]]'''</u>, '''<u>[[22/21]]'''</u>, '''<u>[[21/20]]'''</u>, '''<u>[[20/19]]'''</u>, '''[[19/18]]''', [[18/17]], <small>[[17/16]]</small>, <small><small>[[16/15]]</small></small>, <small><small><small>[[15/14]]</small></small></small> | |||
| ^m2 | |||
| 5 | |||
|- | |||
| 2 | |||
| 164.446 | |||
| <small><small><small>[[14/13]]</small></small></small>, <small>[[13/12]]</small>, [[25/23]], [[12/11]], '''[[23/21]]''', '''<u>[[11/10]]'''</u>, '''[[21/19]]''', [[10/9]], <small><small>[[19/17]]</small></small>, <small><small><small>[[9/8]]</small></small></small> | |||
| vvvM2 | |||
| 10 | |||
|- | |||
| 3 | |||
| 246.669 | |||
| <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[8/7]], '''<u>[[23/20]]'''</u>, '''<u>[[15/13]]'''</u>, '''[[22/19]]''', [[7/6]], <small><small><small>[[20/17]]</small></small></small> | |||
| ^^M2, vvm3 | |||
| 15 | |||
|- | |||
| 4 | |||
| 328.892 | |||
| <small><small><small>[[13/11]]</small></small></small>, <small><small>[[19/16]]</small></small>, <small>[[25/21]]</small>, '''[[6/5]]''', '''<u>[[23/19]]'''</u>, '''[[17/14]]''', [[11/9]], <small><small>[[16/13]]</small></small>, <small><small><small>[[21/17]]</small></small></small> | |||
| ^^^m3 | |||
| 20 | |||
|- | |||
| 5 | |||
| 411.116 | |||
| <small>[[5/4]]</small>, '''<u>[[24/19]]'''</u>, '''<u>[[19/15]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', <small>[[9/7]]</small>, <small><small><small>[[22/17]]</small></small></small> | |||
| vM3 | |||
| 25 | |||
|- | |||
| 6 | |||
| 493.339 | |||
| <small><small><small>[[13/10]]</small></small></small>, <small><small>[[17/13]]</small></small>, <small>[[21/16]]</small>, [[25/19]], '''<u>[[4/3]]'''</u>, <small><small>[[23/17]]</small></small>, <small><small><small>[[19/14]]</small></small></small> | |||
| P4 | |||
| 30 | |||
|- | |||
| 7 | |||
| 575.562 | |||
| <small><small><small>[[15/11]]</small></small></small>, <small>[[11/8]]</small>, '''[[18/13]]''', '''<u>[[25/18]]'''</u>, '''[[7/5]]''', <small>[[24/17]]</small>, <small><small>[[17/12]]</small></small> | |||
| v<sup>4</sup>A4 | |||
| 35 | |||
|- | |||
| 8 | |||
| 657.785 | |||
| <small><small><small>[[10/7]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[16/11]]''', '''<u>[[19/13]]'''</u>, '''<u>[[22/15]]'''</u>, '''[[25/17]]''' | |||
| vvv5 | |||
| 40 | |||
|- | |||
| 9 | |||
| 740.008 | |||
| <small><small><small>[[3/2]]</small></small></small>, '''<u>[[23/15]]'''</u>, '''<u>[[20/13]]'''</u>, '''[[17/11]]''', <small>[[14/9]]</small>, <small><small>[[25/16]]</small></small> | |||
| ^^5, vvm6 | |||
| 45 | |||
|- | |||
| 10 | |||
| 822.231 | |||
| <small><small><small>[[11/7]]</small></small></small>, <small>[[19/12]]</small>, '''[[8/5]]''', '''[[21/13]]''', [[13/8]], <small><small>[[18/11]]</small></small>, <small><small><small>[[23/14]]</small></small></small> | |||
| ^^^m6 | |||
| 50 | |||
|- | |||
| 11 | |||
| 904.454 | |||
| [[5/3]], '''<u>[[22/13]]'''</u>, [[17/10]], <small><small>[[12/7]]</small></small> | |||
| vM6 | |||
| 55 | |||
|- | |||
| 12 | |||
| 986.677 | |||
| <small><small><small>[[19/11]]</small></small></small>, [[7/4]], '''<u>[[23/13]]'''</u>, '''[[16/9]]''', [[25/14]], <small><small>[[9/5]]</small></small> | |||
| m7 | |||
| 60 | |||
|- | |||
| 13 | |||
| 1068.901 | |||
| <small><small>[[20/11]]</small></small>, [[11/6]], '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[15/8]], <small><small>[[17/9]]</small></small> | |||
| v<sup>4</sup>M7 | |||
| 65 | |||
|- | |||
| 14 | |||
| 1151.124 | |||
| <small><small><small>[[19/10]]</small></small></small>, <small><small>[[21/11]]</small></small>, <small>[[23/12]]</small>, [[25/13]] | |||
| ^M7 | |||
| 70 | |||
|- | |||
| 15 | |||
| 1233.347 | |||
| <small><small>[[2/1]]</small></small>, <small><small><small>[[25/12]]</small></small></small> | |||
| ^^1 +1 oct, vvm2 +1 oct | |||
| 75 | |||
|- | |||
| 16 | |||
| 1315.570 | |||
| <small><small><small>[[23/11]]</small></small></small>, <small><small>[[21/10]]</small></small>, <small>[[19/9]]</small>, '''[[17/8]]''', '''<u>[[15/7]]'''</u>, <small>[[13/6]]</small>, <small><small><small>[[24/11]]</small></small></small> | |||
| ^^^m2 +1 oct | |||
| 80 | |||
|- | |||
| 17 | |||
| 1397.793 | |||
| <small><small>[[11/5]]</small></small>, [[20/9]], '''<u>[[9/4]]'''</u>, <small>[[25/11]]</small>, <small><small>[[16/7]]</small></small> | |||
| vM2 +1 oct | |||
| 85 | |||
|- | |||
| 18 | |||
| 1480.016 | |||
| <small><small><small>[[23/10]]</small></small></small>, '''[[7/3]]''', [[19/8]], <small><small><small>[[12/5]]</small></small></small> | |||
| m3 +1 oct | |||
| 90 | |||
|- | |||
| 19 | |||
| 1562.239 | |||
| <small>[[17/7]]</small>, [[22/9]], <small>[[5/2]]</small> | |||
| v<sup>4</sup>M3 +1 oct | |||
| 95 | |||
|- | |||
| 20 | |||
| 1644.462 | |||
| [[23/9]], '''[[18/7]]''', '''[[13/5]]''', <small>[[21/8]]</small> | |||
| ^M3 +1 oct | |||
| 100 | |||
|- | |||
| 21 | |||
| 1726.686 | |||
| <small><small>[[8/3]]</small></small>, '''<u>[[19/7]]'''</u>, <small>[[11/4]]</small> | |||
| ^^4 +1 oct | |||
| 105 | |||
|- | |||
| 22 | |||
| 1808.909 | |||
| <small><small><small>[[25/9]]</small></small></small>, <small>[[14/5]]</small>, '''<u>[[17/6]]'''</u>, '''[[20/7]]''', [[23/8]] | |||
| ^^^d5 +1 oct | |||
| 110 | |||
|- | |||
| 23 | |||
| 1891.132 | |||
| '''[[3/1]]''' | |||
| v5 +1 oct | |||
| 115 | |||
|- | |||
| 24 | |||
| 1973.355 | |||
| '''<u>[[25/8]]'''</u>, '''[[22/7]]''', <small>[[19/6]]</small>, <small><small><small>[[16/5]]</small></small></small> | |||
| m6 +1 oct | |||
| 120 | |||
|- | |||
| 25 | |||
| 2055.578 | |||
| [[13/4]], '''<u>[[23/7]]'''</u>, <small><small>[[10/3]]</small></small> | |||
| v<sup>4</sup>M6 +1 oct | |||
| 125 | |||
|- | |||
| 26 | |||
| 2137.801 | |||
| [[17/5]], '''<u>[[24/7]]'''</u>, <small><small>[[7/2]]</small></small> | |||
| ^M6 +1 oct | |||
| 130 | |||
|- | |||
| 27 | |||
| 2220.024 | |||
| [[25/7]], '''<u>[[18/5]]'''</u>, <small><small>[[11/3]]</small></small> | |||
| ^^m7 +1 oct | |||
| 135 | |||
|- | |||
| 28 | |||
| 2302.247 | |||
| [[15/4]], '''[[19/5]]''', <small>[[23/6]]</small> | |||
| vvM7 +1 oct | |||
| 140 | |||
|- | |||
| 29 | |||
| 2384.471 | |||
| [[4/1]] | |||
| v1 +2 oct | |||
| 145 | |||
|- | |||
| 30 | |||
| 2466.694 | |||
| '''<u>[[25/6]]'''</u>, [[21/5]], <small><small><small>[[17/4]]</small></small></small> | |||
| m2 +2 oct | |||
| 150 | |||
|- | |||
| 31 | |||
| 2548.917 | |||
| '''[[13/3]]''', [[22/5]] | |||
| v<sup>4</sup>M2 +2 oct | |||
| 155 | |||
|- | |||
| 32 | |||
| 2631.140 | |||
| <small>[[9/2]]</small>, '''[[23/5]]''', <small><small><small>[[14/3]]</small></small></small> | |||
| ^M2 +2 oct | |||
| 160 | |||
|- | |||
| 33 | |||
| 2713.363 | |||
| [[19/4]], '''<u>[[24/5]]'''</u> | |||
| ^^m3 +2 oct | |||
| 165 | |||
|- | |||
| 34 | |||
| 2795.586 | |||
| '''[[5/1]]''' | |||
| vvM3 +2 oct | |||
| 170 | |||
|- | |||
| 35 | |||
| 2877.809 | |||
| '''[[21/4]]''', [[16/3]] | |||
| v4 +2 oct | |||
| 175 | |||
|- | |||
| 36 | |||
| 2960.032 | |||
| '''[[11/2]]''' | |||
| ^<sup>4</sup>4 +2 oct | |||
| 180 | |||
|- | |||
| 37 | |||
| 3042.256 | |||
| <small><small><small>[[17/3]]</small></small></small>, [[23/4]] | |||
| v<sup>4</sup>5 +2 oct | |||
| 185 | |||
|- | |||
| 38 | |||
| 3124.479 | |||
| <small>[[6/1]]</small> | |||
| ^5 +2 oct | |||
| 190 | |||
|- | |||
| 39 | |||
| 3206.702 | |||
| <small><small>[[25/4]]</small></small>, '''[[19/3]]''', <small><small>[[13/2]]</small></small> | |||
| ^^m6 +2 oct | |||
| 195 | |||
|- | |||
| 40 | |||
| 3288.925 | |||
| '''<u>[[20/3]]'''</u> | |||
| vvM6 +2 oct | |||
| 200 | |||
|- | |||
| 41 | |||
| 3371.148 | |||
| '''<u>[[7/1]]'''</u> | |||
| vm7 +2 oct | |||
| 205 | |||
|- | |||
| 42 | |||
| 3453.371 | |||
| '''<u>[[22/3]]'''</u>, <small><small><small>[[15/2]]</small></small></small> | |||
| ^<sup>4</sup>m7 +2 oct | |||
| 210 | |||
|- | |||
| 43 | |||
| 3535.594 | |||
| '''[[23/3]]''' | |||
| M7 +2 oct | |||
| 215 | |||
|- | |||
| 44 | |||
| 3617.817 | |||
| [[8/1]] | |||
| ^1 +3 oct | |||
| 220 | |||
|- | |||
| 45 | |||
| 3700.041 | |||
| <small><small>[[25/3]]</small></small>, '''<u>[[17/2]]'''</u> | |||
| ^^m2 +3 oct | |||
| 225 | |||
|- | |||
| 46 | |||
| 3782.264 | |||
| <small>[[9/1]]</small> | |||
| vvM2 +3 oct | |||
| 230 | |||
|- | |||
| 47 | |||
| 3864.487 | |||
| <small><small>[[19/2]]</small></small> | |||
| vm3 +3 oct | |||
| 235 | |||
|- | |||
| 48 | |||
| 3946.710 | |||
| <small><small><small>[[10/1]]</small></small></small> | |||
| ^<sup>4</sup>m3 +3 oct | |||
| 240 | |||
|- | |||
| 49 | |||
| 4028.933 | |||
| | |||
| M3 +3 oct | |||
| 245 | |||
|- | |||
| 50 | |||
| 4111.156 | |||
| <small><small><small>[[21/2]]</small></small></small>, <small><small><small>[[11/1]]</small></small></small> | |||
| ^4 +3 oct | |||
| 250 | |||
|- | |||
| 51 | |||
| 4193.379 | |||
| <small><small><small>[[23/2]]</small></small></small> | |||
| vvvA4 +3 oct | |||
| 255 | |||
|- | |||
| 52 | |||
| 4275.602 | |||
| <small>[[12/1]]</small> | |||
| vv5 +3 oct | |||
| 260 | |||
|- | |||
| 53 | |||
| 4357.826 | |||
| [[25/2]] | |||
| vm6 +3 oct | |||
| 265 | |||
|- | |||
| 54 | |||
| 4440.049 | |||
| '''<u>[[13/1]]'''</u> | |||
| ^<sup>4</sup>m6 +3 oct | |||
| 270 | |||
|- | |||
| 55 | |||
| 4522.272 | |||
| | |||
| M6 +3 oct | |||
| 275 | |||
|- | |||
| 56 | |||
| 4604.495 | |||
| <small><small><small>[[14/1]]</small></small></small> | |||
| ^m7 +3 oct | |||
| 280 | |||
|- | |||
| 57 | |||
| 4686.718 | |||
| '''<u>[[15/1]]'''</u> | |||
| vvvM7 +3 oct | |||
| 285 | |||
|- | |||
| 58 | |||
| 4768.941 | |||
| <small><small>[[16/1]]</small></small> | |||
| ^^M7 +3 oct, vv1 +4 oct | |||
| 290 | |||
|- | |||
| 59 | |||
| 4851.164 | |||
| | |||
| vm2 +4 oct | |||
| 295 | |||
|- | |||
| 60 | |||
| 4933.387 | |||
| <small><small>[[17/1]]</small></small> | |||
| ^<sup>4</sup>m2 +4 oct | |||
| 300 | |||
|- | |||
| 61 | |||
| 5015.611 | |||
| '''[[18/1]]''' | |||
| M2 +4 oct | |||
| 305 | |||
|- | |||
| 62 | |||
| 5097.834 | |||
| '''<u>[[19/1]]'''</u> | |||
| ^m3 +4 oct | |||
| 310 | |||
|- | |||
| 63 | |||
| 5180.057 | |||
| '''<u>[[20/1]]'''</u> | |||
| vvvM3 +4 oct | |||
| 315 | |||
|- | |||
| 64 | |||
| 5262.280 | |||
| '''[[21/1]]''' | |||
| ^^M3 +4 oct, vv4 +4 oct | |||
| 320 | |||
|- | |||
| 65 | |||
| 5344.503 | |||
| '''<u>[[22/1]]'''</u> | |||
| ^^^4 +4 oct | |||
| 325 | |||
|- | |||
| 66 | |||
| 5426.726 | |||
| '''<u>[[23/1]]'''</u> | |||
| ^<sup>4</sup>d5 +4 oct | |||
| 330 | |||
|- | |||
| 67 | |||
| 5508.949 | |||
| '''[[24/1]]''' | |||
| P5 +4 oct | |||
| 335 | |||
|- | |||
| 68 | |||
| 5591.172 | |||
| [[25/1]] | |||
| ^m6 +4 oct | |||
| 340 | |||
|} | |||
== Approximation to JI == | |||
=== Interval mappings === | |||
The following tables show how 25-integer-limit intervals are represented in 45zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 25-integer-limit intervals in 45zpi (by direct approximation) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[23/15]] | |||
| +0.002 | |||
| +0.003 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+0.321''' | |||
| '''+0.390''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-0.479''' | |||
| '''-0.583''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/10]]'' | |||
| ''-0.558'' | |||
| ''-0.679'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+0.728'' | |||
| ''+0.885'' | |||
|- | |||
| [[19/13]] | |||
| +0.800 | |||
| +0.973 | |||
|- | |||
| [[23/13]] | |||
| -1.069 | |||
| -1.300 | |||
|- | |||
| [[15/13]] | |||
| -1.072 | |||
| -1.303 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-1.548''' | |||
| '''-1.883''' | |||
|- | |||
| [[15/1]] | |||
| -1.551 | |||
| -1.886 | |||
|- | |||
| [[22/21]] | |||
| +1.686 | |||
| +2.051 | |||
|- | |||
| [[23/19]] | |||
| -1.869 | |||
| -2.273 | |||
|- | |||
| [[19/15]] | |||
| +1.871 | |||
| +2.276 | |||
|- | |||
| [[19/7]] | |||
| -2.002 | |||
| -2.434 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''-2.244'' | |||
| ''-2.729'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-2.278'' | |||
| ''-2.771'' | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+2.322''' | |||
| '''+2.824''' | |||
|- | |||
| [[18/5]] | |||
| +2.428 | |||
| +2.953 | |||
|- | |||
| [[13/7]] | |||
| -2.801 | |||
| -3.407 | |||
|- | |||
| [[23/7]] | |||
| -3.870 | |||
| -4.707 | |||
|- | |||
| [[15/7]] | |||
| -3.873 | |||
| -4.710 | |||
|- | |||
| [[25/6]] | |||
| -3.979 | |||
| -4.839 | |||
|- | |||
| [[22/3]] | |||
| +4.008 | |||
| +4.875 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''+4.566'' | |||
| ''+5.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''+4.672'' | |||
| ''+5.682'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-4.706'' | |||
| ''-5.724'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''+4.709'' | |||
| ''+5.727'' | |||
|- | |||
| [[17/2]] | |||
| -4.915 | |||
| -5.977 | |||
|- | |||
| [[22/15]] | |||
| -5.264 | |||
| -6.402 | |||
|- | |||
| [[23/22]] | |||
| +5.267 | |||
| +6.405 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-5.778'' | |||
| ''-7.027'' | |||
|- | |||
| [[17/6]] | |||
| +5.908 | |||
| +7.186 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-6.117'' | |||
| ''-7.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''-6.257'' | |||
| ''-7.610'' | |||
|- | |||
| [[22/13]] | |||
| -6.336 | |||
| -7.706 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/11]]'' | |||
| ''-6.392'' | |||
| ''-7.774'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-6.578'' | |||
| ''-8.000'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+6.674'' | |||
| ''+8.116'' | |||
|- | |||
| [[22/1]] | |||
| -6.815 | |||
| -8.288 | |||
|- | |||
| [[25/18]] | |||
| +6.844 | |||
| +8.324 | |||
|- | |||
| [[7/5]] | |||
| -6.950 | |||
| -8.453 | |||
|- | |||
| [[23/21]] | |||
| +6.953 | |||
| +8.456 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+6.994'' | |||
| ''+8.506'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+7.028'' | |||
| ''+8.548'' | |||
|- | |||
| [[22/19]] | |||
| -7.136 | |||
| -8.678 | |||
|- | |||
| [[17/14]] | |||
| -7.237 | |||
| -8.802 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+7.473'' | |||
| ''+9.089'' | |||
|- | |||
| [[21/13]] | |||
| -8.022 | |||
| -9.756 | |||
|- | |||
| [[21/1]] | |||
| -8.501 | |||
| -10.339 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+8.542'' | |||
| ''+10.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''+8.545'' | |||
| ''+10.392'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-8.579'' | |||
| ''-10.434'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/2]]'' | |||
| ''+8.714'' | |||
| ''+10.599'' | |||
|- | |||
| [[21/19]] | |||
| -8.822 | |||
| -10.729 | |||
|- | |||
| [[19/5]] | |||
| -8.952 | |||
| -10.887 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''+9.103'' | |||
| ''+11.071'' | |||
|- | |||
| [[22/7]] | |||
| -9.137 | |||
| -11.113 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+9.272''' | |||
| '''+11.277''' | |||
|- | |||
| [[23/3]] | |||
| +9.275 | |||
| +11.280 | |||
|- | |||
| [[18/7]] | |||
| +9.378 | |||
| +11.406 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-9.413'' | |||
| ''-11.448'' | |||
|- | |||
| [[13/5]] | |||
| -9.751 | |||
| -11.860 | |||
|- | |||
| [[25/17]] | |||
| -9.887 | |||
| -12.025 | |||
|- | |||
| [[13/3]] | |||
| +10.344 | |||
| +12.581 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+10.615'' | |||
| ''+12.909'' | |||
|- | |||
| [[23/5]] | |||
| -10.821 | |||
| -13.160 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-10.823''' | |||
| '''-13.163''' | |||
|- | |||
| [[19/3]] | |||
| +11.144 | |||
| +13.553 | |||
|- | |||
| [[19/18]] | |||
| -11.380 | |||
| -13.840 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''+11.551'' | |||
| ''+14.048'' | |||
|- | |||
| [[18/1]] | |||
| +11.701 | |||
| +14.230 | |||
|- | |||
| [[18/13]] | |||
| +12.180 | |||
| +14.813 | |||
|- | |||
| [[7/3]] | |||
| +13.145 | |||
| +15.987 | |||
|- | |||
| [[23/18]] | |||
| -13.249 | |||
| -16.113 | |||
|- | |||
| [[6/5]] | |||
| +13.251 | |||
| +16.116 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/11]]'' | |||
| ''-13.629'' | |||
| ''-16.576'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+13.809'' | |||
| ''+16.795'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+13.979'' | |||
| ''+17.001'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''+13.981'' | |||
| ''+17.004'' | |||
|- | |||
| [[17/10]] | |||
| -14.187 | |||
| -17.255 | |||
|- | |||
| [[25/2]] | |||
| -14.802 | |||
| -18.002 | |||
|- | |||
| [[22/9]] | |||
| +14.831 | |||
| +18.038 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+15.050'' | |||
| ''+18.304'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+15.389'' | |||
| ''+18.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+15.495'' | |||
| ''+18.845'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''-15.529'' | |||
| ''-18.887'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+15.850'' | |||
| ''+19.277'' | |||
|- | |||
| [[22/5]] | |||
| -16.087 | |||
| -19.566 | |||
|- | |||
| [[25/7]] | |||
| +16.223 | |||
| +19.730 | |||
|- | |||
| [[18/17]] | |||
| -16.731 | |||
| -20.349 | |||
|- | |||
| [[25/14]] | |||
| -17.124 | |||
| -20.826 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''-17.497'' | |||
| ''-21.280'' | |||
|- | |||
| [[21/5]] | |||
| -17.773 | |||
| -21.616 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''+17.817'' | |||
| ''+21.670'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+17.852'' | |||
| ''+21.711'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-17.957'' | |||
| ''-21.840'' | |||
|- | |||
| [[25/19]] | |||
| +18.224 | |||
| +22.164 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''-18.296'' | |||
| ''-22.252'' | |||
|- | |||
| [[11/9]] | |||
| -18.515 | |||
| -22.519 | |||
|- | |||
| [[25/1]] | |||
| +18.545 | |||
| +22.554 | |||
|- | |||
| [[25/13]] | |||
| +19.024 | |||
| +23.137 | |||
|- | |||
| [[17/5]] | |||
| +19.160 | |||
| +23.302 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''-19.366'' | |||
| ''-23.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-19.368'' | |||
| ''-23.556'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/6]]'' | |||
| ''+19.538'' | |||
| ''+23.762'' | |||
|- | |||
| [[25/23]] | |||
| +20.093 | |||
| +24.437 | |||
|- | |||
| [[5/3]] | |||
| +20.096 | |||
| +24.440 | |||
|- | |||
| [[23/9]] | |||
| +20.098 | |||
| +24.443 | |||
|- | |||
| [[7/6]] | |||
| -20.202 | |||
| -24.569 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''-20.236'' | |||
| ''-24.611'' | |||
|- | |||
| [[13/9]] | |||
| +21.167 | |||
| +25.744 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-21.438'' | |||
| ''-26.073'' | |||
|- | |||
| [[9/1]] | |||
| -21.646 | |||
| -26.326 | |||
|- | |||
| [[19/9]] | |||
| +21.967 | |||
| +26.716 | |||
|- | |||
| [[19/6]] | |||
| -22.203 | |||
| -27.003 | |||
|- | |||
| [[6/1]] | |||
| +22.524 | |||
| +27.393 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+22.558'' | |||
| ''+27.435'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''-22.732'' | |||
| ''-27.647'' | |||
|- | |||
| [[13/6]] | |||
| -23.003 | |||
| -27.976 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/11]]'' | |||
| ''-23.516'' | |||
| ''-28.601'' | |||
|- | |||
| [[9/7]] | |||
| -23.968 | |||
| -29.151 | |||
|- | |||
| [[23/6]] | |||
| -24.072 | |||
| -29.276 | |||
|- | |||
| [[5/2]] | |||
| -24.074 | |||
| -29.279 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+24.244'' | |||
| ''+29.486'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-24.632'' | |||
| ''-29.958'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''+24.802'' | |||
| ''+30.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''+24.804'' | |||
| ''+30.167'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-24.908'' | |||
| ''-30.293'' | |||
|- | |||
| [[25/22]] | |||
| +25.360 | |||
| +30.843 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''+25.874'' | |||
| ''+31.468'' | |||
|- | |||
| [[17/7]] | |||
| +26.110 | |||
| +31.755 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''-26.318'' | |||
| ''-32.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''-26.353'' | |||
| ''-32.050'' | |||
|- | |||
| [[14/5]] | |||
| +26.397 | |||
| +32.104 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+26.673'' | |||
| ''+32.440'' | |||
|- | |||
| [[25/21]] | |||
| +27.046 | |||
| +32.893 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+27.230'' | |||
| ''+33.117'' | |||
|- | |||
| [[17/12]] | |||
| -27.439 | |||
| -33.371 | |||
|- | |||
| [[19/17]] | |||
| -28.111 | |||
| -34.189 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+28.432''' | |||
| '''+34.579''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+28.641'' | |||
| ''+34.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''-28.675'' | |||
| ''-34.874'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''-28.781'' | |||
| ''-35.003'' | |||
|- | |||
| [[17/13]] | |||
| +28.911 | |||
| +35.162 | |||
|- | |||
| [[11/3]] | |||
| -29.339 | |||
| -35.682 | |||
|- | |||
| [[25/3]] | |||
| +29.368 | |||
| +35.718 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''-29.508'' | |||
| ''-35.888'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+29.511'' | |||
| ''+35.891'' | |||
|- | |||
| [[23/17]] | |||
| -29.980 | |||
| -36.462 | |||
|- | |||
| [[17/15]] | |||
| +29.983 | |||
| +36.465 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''-30.361'' | |||
| ''-36.925'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-30.580'' | |||
| ''-37.191'' | |||
|- | |||
| [[9/5]] | |||
| -30.919 | |||
| -37.604 | |||
|- | |||
| [[7/2]] | |||
| -31.025 | |||
| -37.732 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-31.059'' | |||
| ''-37.774'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''+31.103'' | |||
| ''+37.827'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+31.379'' | |||
| ''+38.164'' | |||
|- | |||
| [[21/11]] | |||
| +31.661 | |||
| +38.506 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''-32.145'' | |||
| ''-39.095'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''-32.619'' | |||
| ''-39.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/5]]'' | |||
| ''+32.789'' | |||
| ''+39.878'' | |||
|- | |||
| [[19/2]] | |||
| -33.026 | |||
| -40.167 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+33.347''' | |||
| '''+40.557''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-33.381'' | |||
| ''-40.598'' | |||
|- | |||
| [[13/2]] | |||
| -33.826 | |||
| -41.139 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+33.905'' | |||
| ''+41.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''+34.074'' | |||
| ''+41.441'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-34.689'' | |||
| ''-42.189'' | |||
|- | |||
| [[23/2]] | |||
| -34.895 | |||
| -42.439 | |||
|- | |||
| [[15/2]] | |||
| -34.898 | |||
| -42.442 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-35.067'' | |||
| ''-42.649'' | |||
|- | |||
| [[22/17]] | |||
| -35.247 | |||
| -42.867 | |||
|- | |||
| [[19/14]] | |||
| -35.348 | |||
| -42.991 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''-35.625'' | |||
| ''-43.327'' | |||
|- | |||
| [[14/1]] | |||
| +35.669 | |||
| +43.381 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''-35.731'' | |||
| ''-43.456'' | |||
|- | |||
| [[14/13]] | |||
| +36.148 | |||
| +43.963 | |||
|- | |||
| [[21/17]] | |||
| -36.933 | |||
| -44.918 | |||
|- | |||
| [[23/14]] | |||
| -37.217 | |||
| -45.264 | |||
|- | |||
| [[15/14]] | |||
| -37.220 | |||
| -45.267 | |||
|- | |||
| [[25/12]] | |||
| -37.326 | |||
| -45.395 | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''+38.053'' | |||
| ''+46.280'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''+38.056'' | |||
| ''+46.283'' | |||
|- | |||
| [[17/4]] | |||
| -38.262 | |||
| -46.534 | |||
|- | |||
| [[15/11]] | |||
| +38.611 | |||
| +46.959 | |||
|- | |||
| [[23/11]] | |||
| +38.614 | |||
| +46.962 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''+39.125'' | |||
| ''+47.584'' | |||
|- | |||
| [[17/3]] | |||
| +39.255 | |||
| +47.742 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-39.464'' | |||
| ''-47.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/1]]'' | |||
| ''-39.604'' | |||
| ''-48.166'' | |||
|- | |||
| [[13/11]] | |||
| +39.683 | |||
| +48.262 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/7]]'' | |||
| ''+39.739'' | |||
| ''+48.331'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''+39.924'' | |||
| ''+48.556'' | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-40.162''' | |||
| '''-48.845''' | |||
|- | |||
| [[25/9]] | |||
| +40.191 | |||
| +48.881 | |||
|- | |||
| [[10/7]] | |||
| +40.297 | |||
| +49.010 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-40.331'' | |||
| ''-49.051'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''+40.375'' | |||
| ''+49.105'' | |||
|- | |||
| [[19/11]] | |||
| +40.482 | |||
| +49.235 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 25-integer-limit intervals in 45zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[23/15]] | |||
| +0.002 | |||
| +0.003 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+0.321''' | |||
| '''+0.390''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-0.479''' | |||
| '''-0.583''' | |||
|- | |||
| [[19/13]] | |||
| +0.800 | |||
| +0.973 | |||
|- | |||
| [[23/13]] | |||
| -1.069 | |||
| -1.300 | |||
|- | |||
| [[15/13]] | |||
| -1.072 | |||
| -1.303 | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-1.548''' | |||
| '''-1.883''' | |||
|- | |||
| [[15/1]] | |||
| -1.551 | |||
| -1.886 | |||
|- | |||
| [[22/21]] | |||
| +1.686 | |||
| +2.051 | |||
|- | |||
| [[23/19]] | |||
| -1.869 | |||
| -2.273 | |||
|- | |||
| [[19/15]] | |||
| +1.871 | |||
| +2.276 | |||
|- | |||
| [[19/7]] | |||
| -2.002 | |||
| -2.434 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+2.322''' | |||
| '''+2.824''' | |||
|- | |||
| [[18/5]] | |||
| +2.428 | |||
| +2.953 | |||
|- | |||
| [[13/7]] | |||
| -2.801 | |||
| -3.407 | |||
|- | |||
| [[23/7]] | |||
| -3.870 | |||
| -4.707 | |||
|- | |||
| [[15/7]] | |||
| -3.873 | |||
| -4.710 | |||
|- | |||
| [[25/6]] | |||
| -3.979 | |||
| -4.839 | |||
|- | |||
| [[22/3]] | |||
| +4.008 | |||
| +4.875 | |||
|- | |||
| [[17/2]] | |||
| -4.915 | |||
| -5.977 | |||
|- | |||
| [[22/15]] | |||
| -5.264 | |||
| -6.402 | |||
|- | |||
| [[23/22]] | |||
| +5.267 | |||
| +6.405 | |||
|- | |||
| [[17/6]] | |||
| +5.908 | |||
| +7.186 | |||
|- | |||
| [[22/13]] | |||
| -6.336 | |||
| -7.706 | |||
|- | |||
| [[22/1]] | |||
| -6.815 | |||
| -8.288 | |||
|- | |||
| [[25/18]] | |||
| +6.844 | |||
| +8.324 | |||
|- | |||
| [[7/5]] | |||
| -6.950 | |||
| -8.453 | |||
|- | |||
| [[23/21]] | |||
| +6.953 | |||
| +8.456 | |||
|- | |||
| [[22/19]] | |||
| -7.136 | |||
| -8.678 | |||
|- | |||
| [[17/14]] | |||
| -7.237 | |||
| -8.802 | |||
|- | |||
| [[21/13]] | |||
| -8.022 | |||
| -9.756 | |||
|- | |||
| [[21/1]] | |||
| -8.501 | |||
| -10.339 | |||
|- | |||
| [[21/19]] | |||
| -8.822 | |||
| -10.729 | |||
|- | |||
| [[19/5]] | |||
| -8.952 | |||
| -10.887 | |||
|- | |||
| [[22/7]] | |||
| -9.137 | |||
| -11.113 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+9.272''' | |||
| '''+11.277''' | |||
|- | |||
| [[23/3]] | |||
| +9.275 | |||
| +11.280 | |||
|- | |||
| [[18/7]] | |||
| +9.378 | |||
| +11.406 | |||
|- | |||
| [[13/5]] | |||
| -9.751 | |||
| -11.860 | |||
|- | |||
| [[25/17]] | |||
| -9.887 | |||
| -12.025 | |||
|- | |||
| [[13/3]] | |||
| +10.344 | |||
| +12.581 | |||
|- | |||
| [[23/5]] | |||
| -10.821 | |||
| -13.160 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-10.823''' | |||
| '''-13.163''' | |||
|- | |||
| [[19/3]] | |||
| +11.144 | |||
| +13.553 | |||
|- | |||
| [[19/18]] | |||
| -11.380 | |||
| -13.840 | |||
|- | |||
| [[18/1]] | |||
| +11.701 | |||
| +14.230 | |||
|- | |||
| [[18/13]] | |||
| +12.180 | |||
| +14.813 | |||
|- | |||
| [[7/3]] | |||
| +13.145 | |||
| +15.987 | |||
|- | |||
| [[23/18]] | |||
| -13.249 | |||
| -16.113 | |||
|- | |||
| [[6/5]] | |||
| +13.251 | |||
| +16.116 | |||
|- | |||
| [[17/10]] | |||
| -14.187 | |||
| -17.255 | |||
|- | |||
| [[25/2]] | |||
| -14.802 | |||
| -18.002 | |||
|- | |||
| [[22/9]] | |||
| +14.831 | |||
| +18.038 | |||
|- | |||
| [[22/5]] | |||
| -16.087 | |||
| -19.566 | |||
|- | |||
| [[25/7]] | |||
| +16.223 | |||
| +19.730 | |||
|- | |||
| [[18/17]] | |||
| -16.731 | |||
| -20.349 | |||
|- | |||
| [[25/14]] | |||
| -17.124 | |||
| -20.826 | |||
|- | |||
| [[21/5]] | |||
| -17.773 | |||
| -21.616 | |||
|- | |||
| [[25/19]] | |||
| +18.224 | |||
| +22.164 | |||
|- | |||
| [[11/9]] | |||
| -18.515 | |||
| -22.519 | |||
|- | |||
| [[25/1]] | |||
| +18.545 | |||
| +22.554 | |||
|- | |||
| [[25/13]] | |||
| +19.024 | |||
| +23.137 | |||
|- | |||
| [[17/5]] | |||
| +19.160 | |||
| +23.302 | |||
|- | |||
| [[25/23]] | |||
| +20.093 | |||
| +24.437 | |||
|- | |||
| [[5/3]] | |||
| +20.096 | |||
| +24.440 | |||
|- | |||
| [[23/9]] | |||
| +20.098 | |||
| +24.443 | |||
|- | |||
| [[7/6]] | |||
| -20.202 | |||
| -24.569 | |||
|- | |||
| [[13/9]] | |||
| +21.167 | |||
| +25.744 | |||
|- | |||
| [[9/1]] | |||
| -21.646 | |||
| -26.326 | |||
|- | |||
| [[19/9]] | |||
| +21.967 | |||
| +26.716 | |||
|- | |||
| [[19/6]] | |||
| -22.203 | |||
| -27.003 | |||
|- | |||
| [[6/1]] | |||
| +22.524 | |||
| +27.393 | |||
|- | |||
| [[13/6]] | |||
| -23.003 | |||
| -27.976 | |||
|- | |||
| [[9/7]] | |||
| -23.968 | |||
| -29.151 | |||
|- | |||
| [[23/6]] | |||
| -24.072 | |||
| -29.276 | |||
|- | |||
| [[5/2]] | |||
| -24.074 | |||
| -29.279 | |||
|- | |||
| [[25/22]] | |||
| +25.360 | |||
| +30.843 | |||
|- | |||
| [[17/7]] | |||
| +26.110 | |||
| +31.755 | |||
|- | |||
| [[14/5]] | |||
| +26.397 | |||
| +32.104 | |||
|- | |||
| [[25/21]] | |||
| +27.046 | |||
| +32.893 | |||
|- | |||
| [[17/12]] | |||
| -27.439 | |||
| -33.371 | |||
|- | |||
| [[19/17]] | |||
| -28.111 | |||
| -34.189 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+28.432''' | |||
| '''+34.579''' | |||
|- | |||
| [[17/13]] | |||
| +28.911 | |||
| +35.162 | |||
|- | |||
| [[11/3]] | |||
| -29.339 | |||
| -35.682 | |||
|- | |||
| [[25/3]] | |||
| +29.368 | |||
| +35.718 | |||
|- | |||
| [[23/17]] | |||
| -29.980 | |||
| -36.462 | |||
|- | |||
| [[17/15]] | |||
| +29.983 | |||
| +36.465 | |||
|- | |||
| [[9/5]] | |||
| -30.919 | |||
| -37.604 | |||
|- | |||
| [[7/2]] | |||
| -31.025 | |||
| -37.732 | |||
|- | |||
| [[21/11]] | |||
| +31.661 | |||
| +38.506 | |||
|- | |||
| [[19/2]] | |||
| -33.026 | |||
| -40.167 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''+33.347''' | |||
| '''+40.557''' | |||
|- | |||
| [[13/2]] | |||
| -33.826 | |||
| -41.139 | |||
|- | |||
| [[23/2]] | |||
| -34.895 | |||
| -42.439 | |||
|- | |||
| [[15/2]] | |||
| -34.898 | |||
| -42.442 | |||
|- | |||
| [[22/17]] | |||
| -35.247 | |||
| -42.867 | |||
|- | |||
| [[19/14]] | |||
| -35.348 | |||
| -42.991 | |||
|- | |||
| [[14/1]] | |||
| +35.669 | |||
| +43.381 | |||
|- | |||
| [[14/13]] | |||
| +36.148 | |||
| +43.963 | |||
|- | |||
| [[21/17]] | |||
| -36.933 | |||
| -44.918 | |||
|- | |||
| [[23/14]] | |||
| -37.217 | |||
| -45.264 | |||
|- | |||
| [[15/14]] | |||
| -37.220 | |||
| -45.267 | |||
|- | |||
| [[25/12]] | |||
| -37.326 | |||
| -45.395 | |||
|- | |||
| [[17/4]] | |||
| -38.262 | |||
| -46.534 | |||
|- | |||
| [[15/11]] | |||
| +38.611 | |||
| +46.959 | |||
|- | |||
| [[23/11]] | |||
| +38.614 | |||
| +46.962 | |||
|- | |||
| [[17/3]] | |||
| +39.255 | |||
| +47.742 | |||
|- | |||
| [[13/11]] | |||
| +39.683 | |||
| +48.262 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-40.162''' | |||
| '''-48.845''' | |||
|- | |||
| [[25/9]] | |||
| +40.191 | |||
| +48.881 | |||
|- | |||
| [[10/7]] | |||
| +40.297 | |||
| +49.010 | |||
|- | |||
| [[19/11]] | |||
| +40.482 | |||
| +49.235 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''-41.848'' | |||
| ''-50.895'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''-42.299'' | |||
| ''-51.444'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/7]]'' | |||
| ''-42.484'' | |||
| ''-51.669'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/1]]'' | |||
| ''+42.619'' | |||
| ''+51.834'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''-43.098'' | |||
| ''-52.416'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/10]]'' | |||
| ''-44.168'' | |||
| ''-53.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''-44.170'' | |||
| ''-53.720'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''+46.492'' | |||
| ''+56.544'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/5]]'' | |||
| ''+46.598'' | |||
| ''+56.673'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''+47.534'' | |||
| ''+57.811'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''-48.149'' | |||
| ''-58.559'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/5]]'' | |||
| ''-49.434'' | |||
| ''-60.122'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''+50.078'' | |||
| ''+60.905'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''-51.120'' | |||
| ''-62.173'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''+51.862'' | |||
| ''+63.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''+53.442'' | |||
| ''+64.997'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/7]]'' | |||
| ''+53.548'' | |||
| ''+65.126'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''-54.993'' | |||
| ''-66.883'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''-55.550'' | |||
| ''-67.560'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/1]]'' | |||
| ''+55.871'' | |||
| ''+67.950'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/12]]'' | |||
| ''-56.350'' | |||
| ''-68.532'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''+57.315'' | |||
| ''+69.707'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/12]]'' | |||
| ''-57.419'' | |||
| ''-69.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''-57.421'' | |||
| ''-69.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/11]]'' | |||
| ''+58.707'' | |||
| ''+71.399'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''+60.785'' | |||
| ''+73.927'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/6]]'' | |||
| ''-62.685'' | |||
| ''-76.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''+64.266'' | |||
| ''+78.160'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''-64.372'' | |||
| ''-78.289'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''-66.373'' | |||
| ''-80.723'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''+66.694'' | |||
| ''+81.113'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''-67.173'' | |||
| ''-81.696'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''-68.242'' | |||
| ''-82.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''-68.244'' | |||
| ''-82.999'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/11]]'' | |||
| ''+68.594'' | |||
| ''+83.424'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''-70.672'' | |||
| ''-85.952'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''-71.609'' | |||
| ''-87.091'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/2]]'' | |||
| ''-73.509'' | |||
| ''-89.401'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''+73.644'' | |||
| ''+89.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''-75.195'' | |||
| ''-91.452'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''+75.646'' | |||
| ''+92.000'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/11]]'' | |||
| ''+75.831'' | |||
| ''+92.226'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''+75.966'' | |||
| ''+92.390'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''+76.445'' | |||
| ''+92.973'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''-77.514'' | |||
| ''-94.273'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''+77.517'' | |||
| ''+94.276'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''+79.945'' | |||
| ''+97.229'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''-81.496'' | |||
| ''-99.115'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/10]]'' | |||
| ''-82.781'' | |||
| ''-100.679'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''-84.467'' | |||
| ''-102.729'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''+86.789'' | |||
| ''+105.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/7]]'' | |||
| ''+86.895'' | |||
| ''+105.682'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-88.340'' | |||
| ''-107.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+88.897'' | |||
| ''+108.116'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+89.217'' | |||
| ''+108.506'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+89.696'' | |||
| ''+109.089'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+90.766'' | |||
| ''+110.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''+90.768'' | |||
| ''+110.392'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+96.032'' | |||
| ''+116.795'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+97.613'' | |||
| ''+118.717'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+97.718'' | |||
| ''+118.845'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''-99.720'' | |||
| ''-121.280'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''+100.041'' | |||
| ''+121.670'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''-100.520'' | |||
| ''-122.252'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''-101.589'' | |||
| ''-123.553'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-101.591'' | |||
| ''-123.556'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''-104.955'' | |||
| ''-127.647'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-106.855'' | |||
| ''-129.958'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''-108.542'' | |||
| ''-132.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+110.864'' | |||
| ''+134.833'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''-114.842'' | |||
| ''-139.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+116.128'' | |||
| ''+141.235'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-121.687'' | |||
| ''-147.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''+124.115'' | |||
| ''+150.949'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''+129.379'' | |||
| ''+157.351'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''+131.065'' | |||
| ''+159.402'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''-133.067'' | |||
| ''-161.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''+133.387'' | |||
| ''+162.226'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''+133.866'' | |||
| ''+162.809'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''-134.936'' | |||
| ''-164.109'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''+134.938'' | |||
| ''+164.112'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''-140.202'' | |||
| ''-170.514'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''-141.888'' | |||
| ''-172.565'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''+144.211'' | |||
| ''+175.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''+155.034'' | |||
| ''+188.552'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''+173.549'' | |||
| ''+211.071'' | |||
|} | |||
{{Stub}} | |||
[[Category:Zeta peak indexes]] |