34zpi: Difference between revisions
m Added to category |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(38 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{ | '''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{{ | |||
{{ZPI | |||
| zpi = 34 | |||
| steps = 12.0231830072926 | |||
| step size = 99.8071807833375 | |||
| height = 5.193290 | |||
| integral = 1.269599 | |||
| gap = 15.899282 | |||
| edo = 12edo | |||
| octave = 1197.68616940005 | |||
| consistent = 10 | |||
| distinct = 6 | |||
}} | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 left-3 center-4" | |||
|+ style="font-size: 105%; white-space: nowrap;" | Intervals in 34zpi | |||
|- | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | |||
* '''Bold:''' relative error < 16.667 % | |||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| style="text-align:right;" | <center>'''⟨12 19]'''</center><br>[[9/8|Whole tone]] = 2 steps<br>[[256/243|Limma]] = 1 step<br>[[2187/2048|Apotome]] = 1 step | |||
|- | |||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and downs notation | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
| P1 | |||
|- | |||
| 1 | |||
| 99.807 | |||
| '''[[16/15]]''', [[15/14]], <small>[[14/13]]</small>, <small><small>[[13/12]]</small></small> | |||
| m2 | |||
|- | |||
| 2 | |||
| 199.614 | |||
| <small><small><small>[[12/11]]</small></small></small>, <small><small>[[11/10]]</small></small>, [[10/9]], '''<u>[[9/8]]'''</u>, <small>[[8/7]]</small>, <small><small><small>[[15/13]]</small></small></small> | |||
| M2 | |||
|- | |||
| 3 | |||
| 299.422 | |||
| <small>[[7/6]]</small>, '''[[13/11]]''', '''[[6/5]]''', <small><small><small>[[11/9]]</small></small></small> | |||
| m3 | |||
|- | |||
| 4 | |||
| 399.229 | |||
| <small><small>[[16/13]]</small></small>, '''[[5/4]]''', [[14/11]], <small><small>[[9/7]]</small></small> | |||
| M3 | |||
|- | |||
| 5 | |||
| 499.036 | |||
| <small><small><small>[[13/10]]</small></small></small>, '''<u>[[4/3]]'''</u>, <small><small>[[15/11]]</small></small> | |||
| P4 | |||
|- | |||
| 6 | |||
| 598.843 | |||
| <small><small><small>[[11/8]]</small></small></small>, '''[[7/5]]''', [[10/7]], <small><small>[[13/9]]</small></small>, <small><small><small>[[16/11]]</small></small></small> | |||
| A4, d5 | |||
|- | |||
| 7 | |||
| 698.650 | |||
| '''<u>[[3/2]]'''</u> | |||
| P5 | |||
|- | |||
| 8 | |||
| 798.457 | |||
| <small><small>[[14/9]]</small></small>, '''[[11/7]]''', '''[[8/5]]''', <small><small><small>[[13/8]]</small></small></small> | |||
| m6 | |||
|- | |||
| 9 | |||
| 898.265 | |||
| '''[[5/3]]''', <small><small>[[12/7]]</small></small> | |||
| M6 | |||
|- | |||
| 10 | |||
| 998.072 | |||
| <small>[[7/4]]</small>, '''<u>[[16/9]]'''</u>, [[9/5]] | |||
| m7 | |||
|- | |||
| 11 | |||
| 1097.879 | |||
| <small><small><small>[[11/6]]</small></small></small>, <small>[[13/7]]</small>, '''[[15/8]]''' | |||
| M7 | |||
|- | |||
| 12 | |||
| 1197.686 | |||
| '''<u>[[2/1]]'''</u> | |||
| P1 +1 oct | |||
|- | |||
| 13 | |||
| 1297.493 | |||
| [[15/7]], <small><small>[[13/6]]</small></small> | |||
| m2 +1 oct | |||
|- | |||
| 14 | |||
| 1397.301 | |||
| <small>[[11/5]]</small>, '''<u>[[9/4]]'''</u>, <small><small>[[16/7]]</small></small> | |||
| M2 +1 oct | |||
|- | |||
| 15 | |||
| 1497.108 | |||
| <small>[[7/3]]</small>, [[12/5]] | |||
| m3 +1 oct | |||
|- | |||
| 16 | |||
| 1596.915 | |||
| '''[[5/2]]''' | |||
| M3 +1 oct | |||
|- | |||
| 17 | |||
| 1696.722 | |||
| <small><small><small>[[13/5]]</small></small></small>, '''<u>[[8/3]]'''</u> | |||
| P4 +1 oct | |||
|- | |||
| 18 | |||
| 1796.529 | |||
| <small><small><small>[[11/4]]</small></small></small>, '''[[14/5]]''' | |||
| A4 +1 oct, d5 +1 oct | |||
|- | |||
| 19 | |||
| 1896.336 | |||
| '''<u>[[3/1]]'''</u> | |||
| P5 +1 oct | |||
|- | |||
| 20 | |||
| 1996.144 | |||
| [[16/5]], <small><small><small>[[13/4]]</small></small></small> | |||
| m6 +1 oct | |||
|- | |||
| 21 | |||
| 2095.951 | |||
| '''[[10/3]]''' | |||
| M6 +1 oct | |||
|- | |||
| 22 | |||
| 2195.758 | |||
| <small>[[7/2]]</small> | |||
| m7 +1 oct | |||
|- | |||
| 23 | |||
| 2295.565 | |||
| <small><small><small>[[11/3]]</small></small></small>, '''<u>[[15/4]]'''</u> | |||
| M7 +1 oct | |||
|- | |||
| 24 | |||
| 2395.372 | |||
| '''<u>[[4/1]]'''</u> | |||
| P1 +2 oct | |||
|- | |||
| 25 | |||
| 2495.180 | |||
| <small><small><small>[[13/3]]</small></small></small> | |||
| m2 +2 oct | |||
|- | |||
| 26 | |||
| 2594.987 | |||
| '''[[9/2]]''' | |||
| M2 +2 oct | |||
|- | |||
| 27 | |||
| 2694.794 | |||
| <small>[[14/3]]</small> | |||
| m3 +2 oct | |||
|- | |||
| 28 | |||
| 2794.601 | |||
| '''<u>[[5/1]]'''</u> | |||
| M3 +2 oct | |||
|- | |||
| 29 | |||
| 2894.408 | |||
| '''<u>[[16/3]]'''</u> | |||
| P4 +2 oct | |||
|- | |||
| 30 | |||
| 2994.215 | |||
| <small><small><small>[[11/2]]</small></small></small> | |||
| A4 +2 oct, d5 +2 oct | |||
|- | |||
| 31 | |||
| 3094.023 | |||
| '''<u>[[6/1]]'''</u> | |||
| P5 +2 oct | |||
|- | |||
| 32 | |||
| 3193.830 | |||
| <small><small><small>[[13/2]]</small></small></small> | |||
| m6 +2 oct | |||
|- | |||
| 33 | |||
| 3293.637 | |||
| | |||
| M6 +2 oct | |||
|- | |||
| 34 | |||
| 3393.444 | |||
| [[7/1]] | |||
| m7 +2 oct | |||
|- | |||
| 35 | |||
| 3493.251 | |||
| '''<u>[[15/2]]'''</u> | |||
| M7 +2 oct | |||
|- | |||
| 36 | |||
| 3593.059 | |||
| '''<u>[[8/1]]'''</u> | |||
| P1 +3 oct | |||
|- | |||
| 37 | |||
| 3692.866 | |||
| | |||
| m2 +3 oct | |||
|- | |||
| 38 | |||
| 3792.673 | |||
| '''[[9/1]]''' | |||
| M2 +3 oct | |||
|- | |||
| 39 | |||
| 3892.480 | |||
| | |||
| m3 +3 oct | |||
|- | |||
| 40 | |||
| 3992.287 | |||
| '''<u>[[10/1]]'''</u> | |||
| M3 +3 oct | |||
|- | |||
| 41 | |||
| 4092.094 | |||
| | |||
| P4 +3 oct | |||
|- | |||
| 42 | |||
| 4191.902 | |||
| <small><small>[[11/1]]</small></small> | |||
| A4 +3 oct, d5 +3 oct | |||
|- | |||
| 43 | |||
| 4291.709 | |||
| '''[[12/1]]''' | |||
| P5 +3 oct | |||
|- | |||
| 44 | |||
| 4391.516 | |||
| <small><small><small>[[13/1]]</small></small></small> | |||
| m6 +3 oct | |||
|- | |||
| 45 | |||
| 4491.323 | |||
| | |||
| M6 +3 oct | |||
|- | |||
| 46 | |||
| 4591.130 | |||
| [[14/1]] | |||
| m7 +3 oct | |||
|- | |||
| 47 | |||
| 4690.937 | |||
| '''<u>[[15/1]]'''</u> | |||
| M7 +3 oct | |||
|- | |||
| 48 | |||
| 4790.745 | |||
| '''[[16/1]]''' | |||
| P1 +4 oct | |||
|} | |||
== Approximation to JI == | |||
=== Interval mappings === | |||
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by direct approximation) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[4/3]] | |||
| +0.991 | |||
| +0.993 | |||
|- | |||
| [[8/3]] | |||
| -1.323 | |||
| -1.325 | |||
|- | |||
| [[16/9]] | |||
| +1.982 | |||
| +1.986 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-2.314''' | |||
| '''-2.318''' | |||
|- | |||
| [[15/1]] | |||
| +2.669 | |||
| +2.674 | |||
|- | |||
| [[3/2]] | |||
| -3.305 | |||
| -3.311 | |||
|- | |||
| [[16/3]] | |||
| -3.637 | |||
| -3.644 | |||
|- | |||
| [[9/8]] | |||
| -4.296 | |||
| -4.304 | |||
|- | |||
| [[4/1]] | |||
| -4.628 | |||
| -4.637 | |||
|- | |||
| [[15/2]] | |||
| +4.983 | |||
| +4.992 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.619''' | |||
| '''-5.629''' | |||
|- | |||
| [[10/1]] | |||
| +5.974 | |||
| +5.985 | |||
|- | |||
| [[9/4]] | |||
| -6.609 | |||
| -6.622 | |||
|- | |||
| [[8/1]] | |||
| -6.941 | |||
| -6.955 | |||
|- | |||
| [[15/4]] | |||
| +7.296 | |||
| +7.311 | |||
|- | |||
| [[6/1]] | |||
| -7.932 | |||
| -7.948 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+8.287''' | |||
| '''+8.303''' | |||
|- | |||
| [[9/2]] | |||
| -8.923 | |||
| -8.941 | |||
|- | |||
| [[16/1]] | |||
| -9.255 | |||
| -9.273 | |||
|- | |||
| [[15/8]] | |||
| +9.610 | |||
| +9.629 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/11]]'' | |||
| ''+10.212'' | |||
| ''+10.232'' | |||
|- | |||
| [[12/1]] | |||
| -10.246 | |||
| -10.266 | |||
|- | |||
| [[5/2]] | |||
| +10.601 | |||
| +10.622 | |||
|- | |||
| [[9/1]] | |||
| -11.237 | |||
| -11.259 | |||
|- | |||
| [[10/3]] | |||
| +11.592 | |||
| +11.614 | |||
|- | |||
| [[16/15]] | |||
| -11.924 | |||
| -11.947 | |||
|- | |||
| [[5/4]] | |||
| +12.915 | |||
| +12.940 | |||
|- | |||
| [[5/3]] | |||
| +13.906 | |||
| +13.933 | |||
|- | |||
| [[14/5]] | |||
| +14.017 | |||
| +14.044 | |||
|- | |||
| [[8/5]] | |||
| -15.229 | |||
| -15.258 | |||
|- | |||
| [[11/7]] | |||
| +15.965 | |||
| +15.996 | |||
|- | |||
| [[6/5]] | |||
| -16.220 | |||
| -16.251 | |||
|- | |||
| [[7/5]] | |||
| +16.331 | |||
| +16.362 | |||
|- | |||
| [[10/9]] | |||
| +17.211 | |||
| +17.244 | |||
|- | |||
| [[16/5]] | |||
| -17.543 | |||
| -17.577 | |||
|- | |||
| [[14/11]] | |||
| -18.279 | |||
| -18.315 | |||
|- | |||
| [[12/5]] | |||
| -18.534 | |||
| -18.569 | |||
|- | |||
| [[10/7]] | |||
| -18.645 | |||
| -18.681 | |||
|- | |||
| [[9/5]] | |||
| -19.524 | |||
| -19.562 | |||
|- | |||
| [[15/14]] | |||
| -19.636 | |||
| -19.674 | |||
|- | |||
| [[15/7]] | |||
| -21.949 | |||
| -21.992 | |||
|- | |||
| [[14/1]] | |||
| +22.304 | |||
| +22.347 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+24.618''' | |||
| '''+24.666''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/7]]'' | |||
| ''+26.177'' | |||
| ''+26.228'' | |||
|- | |||
| [[7/2]] | |||
| +26.932 | |||
| +26.984 | |||
|- | |||
| [[14/3]] | |||
| +27.923 | |||
| +27.977 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/13]]'' | |||
| ''-28.491'' | |||
| ''-28.546'' | |||
|- | |||
| [[7/4]] | |||
| +29.246 | |||
| +29.302 | |||
|- | |||
| [[7/3]] | |||
| +30.237 | |||
| +30.295 | |||
|- | |||
| [[8/7]] | |||
| -31.560 | |||
| -31.621 | |||
|- | |||
| [[11/5]] | |||
| +32.296 | |||
| +32.359 | |||
|- | |||
| [[7/6]] | |||
| +32.551 | |||
| +32.614 | |||
|- | |||
| [[14/9]] | |||
| +33.542 | |||
| +33.606 | |||
|- | |||
| [[16/7]] | |||
| -33.874 | |||
| -33.939 | |||
|- | |||
| [[11/10]] | |||
| +34.610 | |||
| +34.677 | |||
|- | |||
| [[12/7]] | |||
| -34.864 | |||
| -34.932 | |||
|- | |||
| [[9/7]] | |||
| -35.855 | |||
| -35.925 | |||
|- | |||
| [[13/9]] | |||
| -37.775 | |||
| -37.848 | |||
|- | |||
| [[15/11]] | |||
| -37.915 | |||
| -37.988 | |||
|- | |||
| [[13/12]] | |||
| -38.765 | |||
| -38.840 | |||
|- | |||
| [[16/13]] | |||
| +39.756 | |||
| +39.833 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''+40.584''' | |||
| '''+40.662''' | |||
|- | |||
| [[13/6]] | |||
| -41.079 | |||
| -41.159 | |||
|- | |||
| [[13/8]] | |||
| -42.070 | |||
| -42.151 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/5]]'' | |||
| ''+42.508'' | |||
| ''+42.590'' | |||
|- | |||
| [[11/2]] | |||
| +42.897 | |||
| +42.980 | |||
|- | |||
| [[13/3]] | |||
| -43.393 | |||
| -43.477 | |||
|- | |||
| [[13/4]] | |||
| -44.384 | |||
| -44.470 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''+44.822'' | |||
| ''+44.909'' | |||
|- | |||
| [[11/4]] | |||
| +45.211 | |||
| +45.299 | |||
|- | |||
| [[11/3]] | |||
| +46.202 | |||
| +46.291 | |||
|- | |||
| [[13/2]] | |||
| -46.698 | |||
| -46.788 | |||
|- | |||
| [[11/8]] | |||
| +47.525 | |||
| +47.617 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''-47.986'' | |||
| ''-48.079'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/13]]'' | |||
| ''-48.127'' | |||
| ''-48.220'' | |||
|- | |||
| [[11/6]] | |||
| +48.516 | |||
| +48.610 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+48.977'' | |||
| ''+49.072'' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-49.012''' | |||
| '''-49.106''' | |||
|- | |||
| [[16/11]] | |||
| -49.839 | |||
| -49.935 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[4/3]] | |||
| +0.991 | |||
| +0.993 | |||
|- | |||
| [[8/3]] | |||
| -1.323 | |||
| -1.325 | |||
|- | |||
| [[16/9]] | |||
| +1.982 | |||
| +1.986 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-2.314''' | |||
| '''-2.318''' | |||
|- | |||
| [[15/1]] | |||
| +2.669 | |||
| +2.674 | |||
|- | |||
| [[3/2]] | |||
| -3.305 | |||
| -3.311 | |||
|- | |||
| [[16/3]] | |||
| -3.637 | |||
| -3.644 | |||
|- | |||
| [[9/8]] | |||
| -4.296 | |||
| -4.304 | |||
|- | |||
| [[4/1]] | |||
| -4.628 | |||
| -4.637 | |||
|- | |||
| [[15/2]] | |||
| +4.983 | |||
| +4.992 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.619''' | |||
| '''-5.629''' | |||
|- | |||
| [[10/1]] | |||
| +5.974 | |||
| +5.985 | |||
|- | |||
| [[9/4]] | |||
| -6.609 | |||
| -6.622 | |||
|- | |||
| [[8/1]] | |||
| -6.941 | |||
| -6.955 | |||
|- | |||
| [[15/4]] | |||
| +7.296 | |||
| +7.311 | |||
|- | |||
| [[6/1]] | |||
| -7.932 | |||
| -7.948 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+8.287''' | |||
| '''+8.303''' | |||
|- | |||
| [[9/2]] | |||
| -8.923 | |||
| -8.941 | |||
|- | |||
| [[16/1]] | |||
| -9.255 | |||
| -9.273 | |||
|- | |||
| [[15/8]] | |||
| +9.610 | |||
| +9.629 | |||
|- | |||
| [[12/1]] | |||
| -10.246 | |||
| -10.266 | |||
|- | |||
| [[5/2]] | |||
| +10.601 | |||
| +10.622 | |||
|- | |||
| [[9/1]] | |||
| -11.237 | |||
| -11.259 | |||
|- | |||
| [[10/3]] | |||
| +11.592 | |||
| +11.614 | |||
|- | |||
| [[16/15]] | |||
| -11.924 | |||
| -11.947 | |||
|- | |||
| [[5/4]] | |||
| +12.915 | |||
| +12.940 | |||
|- | |||
| [[5/3]] | |||
| +13.906 | |||
| +13.933 | |||
|- | |||
| [[14/5]] | |||
| +14.017 | |||
| +14.044 | |||
|- | |||
| [[8/5]] | |||
| -15.229 | |||
| -15.258 | |||
|- | |||
| [[11/7]] | |||
| +15.965 | |||
| +15.996 | |||
|- | |||
| [[6/5]] | |||
| -16.220 | |||
| -16.251 | |||
|- | |||
| [[7/5]] | |||
| +16.331 | |||
| +16.362 | |||
|- | |||
| [[10/9]] | |||
| +17.211 | |||
| +17.244 | |||
|- | |||
| [[16/5]] | |||
| -17.543 | |||
| -17.577 | |||
|- | |||
| [[14/11]] | |||
| -18.279 | |||
| -18.315 | |||
|- | |||
| [[12/5]] | |||
| -18.534 | |||
| -18.569 | |||
|- | |||
| [[10/7]] | |||
| -18.645 | |||
| -18.681 | |||
|- | |||
| [[9/5]] | |||
| -19.524 | |||
| -19.562 | |||
|- | |||
| [[15/14]] | |||
| -19.636 | |||
| -19.674 | |||
|- | |||
| [[15/7]] | |||
| -21.949 | |||
| -21.992 | |||
|- | |||
| [[14/1]] | |||
| +22.304 | |||
| +22.347 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+24.618''' | |||
| '''+24.666''' | |||
|- | |||
| [[7/2]] | |||
| +26.932 | |||
| +26.984 | |||
|- | |||
| [[14/3]] | |||
| +27.923 | |||
| +27.977 | |||
|- | |||
| [[7/4]] | |||
| +29.246 | |||
| +29.302 | |||
|- | |||
| [[7/3]] | |||
| +30.237 | |||
| +30.295 | |||
|- | |||
| [[8/7]] | |||
| -31.560 | |||
| -31.621 | |||
|- | |||
| [[11/5]] | |||
| +32.296 | |||
| +32.359 | |||
|- | |||
| [[7/6]] | |||
| +32.551 | |||
| +32.614 | |||
|- | |||
| [[14/9]] | |||
| +33.542 | |||
| +33.606 | |||
|- | |||
| [[16/7]] | |||
| -33.874 | |||
| -33.939 | |||
|- | |||
| [[11/10]] | |||
| +34.610 | |||
| +34.677 | |||
|- | |||
| [[12/7]] | |||
| -34.864 | |||
| -34.932 | |||
|- | |||
| [[9/7]] | |||
| -35.855 | |||
| -35.925 | |||
|- | |||
| [[13/9]] | |||
| -37.775 | |||
| -37.848 | |||
|- | |||
| [[15/11]] | |||
| -37.915 | |||
| -37.988 | |||
|- | |||
| [[13/12]] | |||
| -38.765 | |||
| -38.840 | |||
|- | |||
| [[16/13]] | |||
| +39.756 | |||
| +39.833 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''+40.584''' | |||
| '''+40.662''' | |||
|- | |||
| [[13/6]] | |||
| -41.079 | |||
| -41.159 | |||
|- | |||
| [[13/8]] | |||
| -42.070 | |||
| -42.151 | |||
|- | |||
| [[11/2]] | |||
| +42.897 | |||
| +42.980 | |||
|- | |||
| [[13/3]] | |||
| -43.393 | |||
| -43.477 | |||
|- | |||
| [[13/4]] | |||
| -44.384 | |||
| -44.470 | |||
|- | |||
| [[11/4]] | |||
| +45.211 | |||
| +45.299 | |||
|- | |||
| [[11/3]] | |||
| +46.202 | |||
| +46.291 | |||
|- | |||
| [[13/2]] | |||
| -46.698 | |||
| -46.788 | |||
|- | |||
| [[11/8]] | |||
| +47.525 | |||
| +47.617 | |||
|- | |||
| [[11/6]] | |||
| +48.516 | |||
| +48.610 | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-49.012''' | |||
| '''-49.106''' | |||
|- | |||
| [[16/11]] | |||
| -49.839 | |||
| -49.935 | |||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''-50.830'' | |||
| ''-50.928'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/13]]'' | |||
| ''+51.680'' | |||
| ''+51.780'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''+51.821'' | |||
| ''+51.921'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''-54.985'' | |||
| ''-55.091'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/5]]'' | |||
| ''-57.299'' | |||
| ''-57.410'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/13]]'' | |||
| ''+71.316'' | |||
| ''+71.454'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/7]]'' | |||
| ''-73.630'' | |||
| ''-73.772'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/11]]'' | |||
| ''-89.595'' | |||
| ''-89.768'' | |||
|} | |||
== See also == | |||
* [[12edo]] | |||
* [[19edt]] | |||
* [[28ed5]] | |||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] | ||
{{Stub}} |