248edo: Difference between revisions
Expand on theory and misc. cleanup |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
248edo shares the mapping of [[harmonic]]s [[5/1|5]] and [[7/1|7]] with [[31edo]]. It has a decent 13-limit interpretation despite not being [[consistent]]. The equal temperament [[tempering out|tempers out]] [[32805/32768]] in the 5-limit; [[3136/3125]] and [[420175/419904]] in the 7-limit; [[441/440]], [[8019/8000]] in the 11-limit; [[729/728]], [[847/845]], [[1001/1000]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It also notably tempers out the [[quartisma]]. 248edo, additionally, has the interesting property of its mapping for all prime harmonics 3 to 23 being a multiple of 3, and therefore derived from [[131edt]]. Similarly, using the lower-error 248[[Wart notation|h]] val, the mappings of all its [[2.5.7_subgroup|no-3]] harmonics up to [[23-limit|28]] are multiples of 2 and derived from [[124edo]]. | |||
It [[support]]s the [[bischismic]] temperament, providing the [[optimal patent val]] for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the [[essence]] temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords. | It [[support]]s the [[bischismic]] temperament, providing the [[optimal patent val]] for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the [[essence]] temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords. | ||
Line 15: | Line 15: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 62: | Line 63: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 79: | Line 81: | ||
| 498.39 | | 498.39 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 77\248<br>(47\248) | | 77\248<br />(47\248) | ||
| 372.58<br>(227.42) | | 372.58<br />(227.42) | ||
| 26/21<br>(154/135) | | 26/21<br />(154/135) | ||
| [[Essence]] | | [[Essence]] | ||
|- | |- | ||
Line 94: | Line 96: | ||
|- | |- | ||
| 8 | | 8 | ||
| 117\248<br>(7\248) | | 117\248<br />(7\248) | ||
| 566.13<br>(33.87) | | 566.13<br />(33.87) | ||
| 104/75<br>(49/48) | | 104/75<br />(49/48) | ||
| [[Octowerck]] | | [[Octowerck]] | ||
|- | |- | ||
| 31 | | 31 | ||
| 103\248<br>(1\248) | | 103\248<br />(1\248) | ||
| 498.39<br>(4.84) | | 498.39<br />(4.84) | ||
| 4/3<br>(385/384) | | 4/3<br />(385/384) | ||
| [[Birds]] | | [[Birds]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
[[Category:Bischismic]] | [[Category:Bischismic]] | ||
[[Category:Essence]] | [[Category:Essence]] |